Towards Automated Boundary Delineation for UAV-based Cadastral Mapping

Author: Sophie Crommelinck (s.crommelinck@utwente.nl)

State-of-art workflow

Envisioned workflow

Introduction

- **Trends:** Unmanned aerial vehicles (UAVs) have gained increasing popularity in remote sensing. Cadastral mapping (capturing the extent, value and owner ship of land) has emerged as field of application for UAVs.
- Research Gap: UAV-based cadastral mapping is to no extent automated.
- **Goal:** Contribute to recent endeavor of making cadastral mapping more reproducible, transparent, automated, scalable and cost-effective by developing a tool for UAV-based cadastral mapping.
- Assumption: Cadastral boundaries are often demarcated by objects that can be extracted automatically with image analysis methods.

Approach

- Review case studies on (cadastral) mapping based on remotely sensed data and the methods applied to extract features.
- Design hypothetical workflow for automated feature extraction from high-resolution optical data.

gPb Contour

Detection

Hierarchical

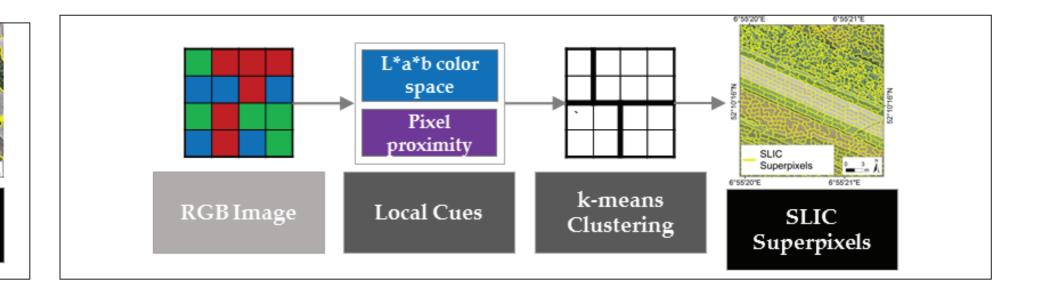
Segmentation

Binary

Boundary

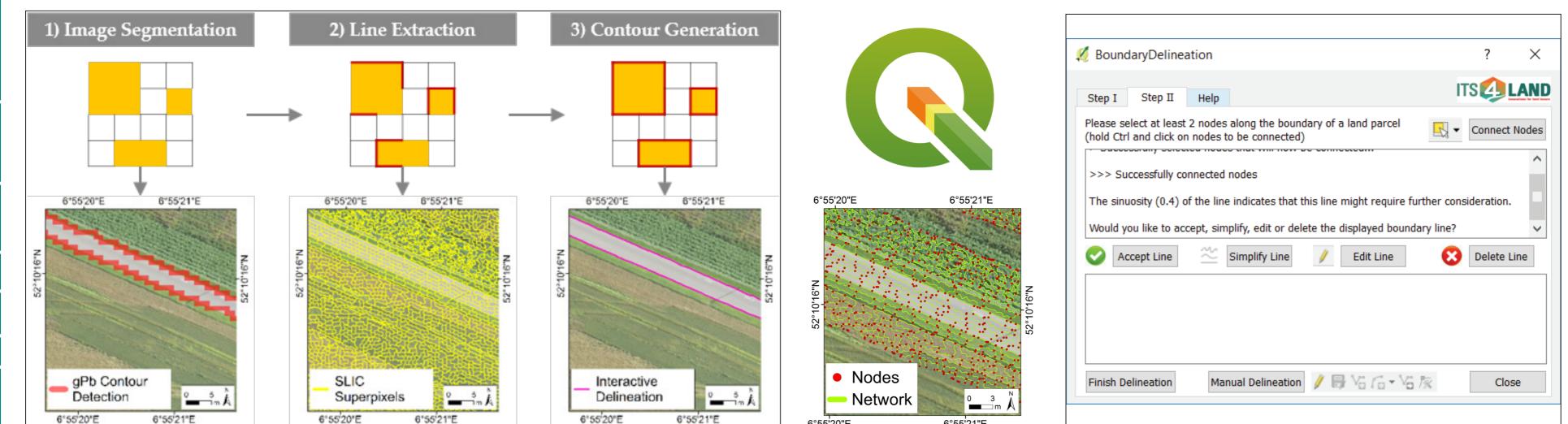
Map

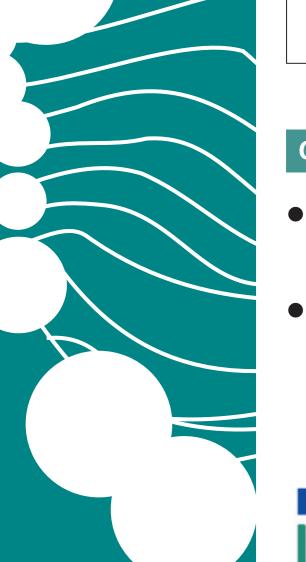
Texture


Color

Brightness

Local +


Global Cues


- Determine optimal methods for workflow by testing them on UAV datasets in terms of detection quality and localization quality of visible boundaries.
- Design and implement QGIS plugin that combines optimal methods.

Results

RGB Image

 gPb Contour Detection 	°nÅ	SLIC Superpixels	°,	Interactive Delineation	A me	 Nodes Network 		Finish De
6°55'20"E	6*55 ² 1"E	6°55'20"E	3*55 ¹ 21"E	6°55'20"E 6°5	55'21"E	6°55'20"E	6°55'21"E	

Conclusion

- The proposed workflow bears potential to generate a tool for cadastral boundary delineation that is highly automatic, generic and adaptive to different scenarios.
- Methods from computer vision bear potential for solving the described task and are transferable to remote sensing data of high-resolution.
- The approach is most suitable for areas (i) where object contours are clearly visible and coincide with cadastral boundaries and (ii) where concepts such as fit-for-purpose and responsible land administration are accepted or in place.
- Future work will focus of the tool's usability and the integration of user interaction.

UNIVERSITY OF TWENTE.

References				
Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 2014, 92, 79-97.				
Crommelinck, S., Bennett, R., Gerke, M., Koeva, M., Yang, M.Y., Vosselman, G. SLIC Superpixels for Object Delineation from UAV Data. In: UAV-g, Bonn, Germany, 04-07 September 2017, pp. 1-8.				
Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.; Vosselman, G. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing 2016, 8, 1-28.				
Crommelinck, S.; Bennett, R.; Gerke, M.; Yang, M.; Vosselman, G. Contour detection for UAV-based cadastral mapping. Remote Sensing 2017, 9, 171.				

Acknowledgments

This work was supported by its4land (www.its4land.com), which is part of the Horizon 2020 program of the European Union [project number 687828].

Supervisors: George Vosselman, Michael Ying Yang and Mila Koeva

