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Executive Summary 
This document reports the outcomes of work leading to deliverable D3.5 under the task T3.3 
“Sketch-to-Geo”. Deliverable 3.5 is the fifth deliverable of work package WP3, Draw and 
Make. D3.5 reports on the approach used for qualitative alignment of sketched information 
with underlying geo-referenced datasets. In particular, D3.5 demonstrates the applicability of 
robust matching algorithms for the sketch map alignment problem.  

Qualitative alignment is the process of matching the qualitative descriptions of a pair of 
spatial scenes. It involves searching for a correspondence between objects in one scene with 
objects in the other such that the similarity of spatial relations between corresponding pairs is 
maximized. The qualitative descriptions are fundamental to these processes because the 
measure of similarity depends on the mutual agreement between matched pairs across the 
qualitative descriptions. The qualitative descriptions of the maps involved are computed 
using the qualifier tool reported in deliverable D3.3. The qualifier takes as input a spatial 
configuration of geographic features and produces qualitative spatial scene description 
consisting of a set of graphs called Qualitative Constraint Networks (QCNs). QCNs are 
graphs where the nodes represent geometric features and the edges represent spatial relations 
between them.  

The tool presented in this report takes as input as a pair of qualitative spatial scene 
descriptions and applies an approximate dynamic programming that uses a default search 
policy based on our local compatibility matrix model.  
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1.  Introduction  
Its4land is a European Commission Horizon 2020 project funded under its Industrial 
Leadership program, specifically the ‘Leadership in enabling and industrial technologies – 
Information and Communication Technologies ICT (H2020-EU.2.1.1.)’, under the call 
H2020-ICT-2015 – and the specific topic – ‘International partnership building in low and 
middle-income countries’ ICT-39-2015.  

Its4land aims to deliver an innovative suite of land tenure recording tools that respond to sub 
Saharan Africa’s immense challenge to rapidly and cheaply map millions of unrecognized 
land rights in the region. ICT innovation is intended to play a key role. Many existing ICT-
based approaches to land tenure recording in the region have failed: disputes abound, 
investment is impeded, and the community’s poorest lose out. its4land seeks to reinforce 
strategic collaboration between the EU and East Africa via a scalable and transferrable ICT 
solution. Established local, national, and international partnerships seek to drive the project 
results beyond R&D into the commercial realm. its4land combines an innovation process 
with emerging geospatial technologies, including smart sketch maps, UAVs, automated 
feature extraction, and geocloud services, to deliver land recording services that are end-user 
responsive, market driven, and fit-for-purpose. The transdisciplinary work also develops 
supportive models for governance, capacity development, and business capitalization. Gender 
sensitive analysis and design is also incorporated. Set in the East African development 
hotbeds of Rwanda, Kenya, and Ethiopia, its4land falls within TRL 5-7: 3 major phases host 
8 work packages that enable contextualization, design, and eventual land sector 
transformation. In line with Living Labs thinking, localized pilots and demonstrations are 
embedded in the design process. The experienced consortium is multi-sectorial, multi-
national, and multidisciplinary. It includes SMEs and researchers from 3 EU countries and 3 
East African countries: the necessary complementary skills and expertise is delivered. 
Responses to the range of barriers are prepared: strong networks across East Africa are key in 
mitigation. The tailored project management plan ensures clear milestones and deliverables, 
and supports result dissemination and exploitation: specific work packages and roles focus on 
the latter. 

This document reports on deliverable D3.5 which is directly linked to the task T3.3 “sketch-
to-geo” of the work package (WP3) in the project. WP3 aims at developing a software tool, 
Smart SkeMa (pronounced smärt skē-mə) in short for recording land tenure information 
based on hand-drawn sketch maps. Our goal is to fill the gap in this area that has been left by 
traditional GIS systems. Smart SkeMa is poised to do so by providing the means to 
automatically digitize hand drawn maps, geo-localize the main elements in the maps using an 
existing base map as a reference, and providing the means to visualize and further annotate 
the maps with relevant concepts. The tool is composed of several components including a 
model of land use concepts, recognition and extraction of objects in sketch maps, qualitative 
representation of input maps, and qualitative alignment of sketched information with 
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underlying geo-referenced datasets. All these components come together to provide a single 
function: integrating the user’s sketch into a base topographic dataset. 

The integration of sketch information requires geolocalization of sketched objects: a process 
by which objects drawn in a freehand  sketch are grounded within an underlying geo-
referenced dataset. It involves finding correspondences between the spatial entities in the first 
scene and those in the second that, in a sense, respect the spatial relations within the scenes 
being matched [1]. For this task object annotations and spatial relations can be seen as 
constraints on a configuration so that finding the best alignment becomes finding a 
correspondence between objects that minimizes constraint violations, i.e. a graph matching 
problem. This can be done by listing all the nodes from sketch map graph and inserting a 
labelled arc between any two nodes connected by an arc in the original graph. The alignment 
process can then be thought of as the task of similarly listing the metric map nodes and then 
permuting them so that the first n nodes in the metric map list together with their out-going 
arcs correspond to the first n nodes of the sketch map list together with their out-going arcs in 
a way that minimizes the differences between corresponding constraints.  

In T3.3 we have developed a graph matching algorithm that performs this task. The algorithm 
takes qualitative spatial representations of a sketch map and a geo-referenced map as input. 
Qualitative spatial representations involve representing only the relevant distinctions in a 
spatial configuration using some form of qualitative relations such as left_of, right_of, near, 
and far. In the deliverable D3.3, we implemented a qualifier (a software tool for computing 
qualitative representations of maps). The qualifier takes vector representations of maps as 
input and generates graph representations known as Qualitative Constraint Networks (QCNs) 
from the spatial configurations. The matching algorithm uses these QCNs as input for the 
alignment of spatial objects from sketch maps with corresponding geo-referenced maps.  

The algorithm presented in this report has been implemented in python and is submitted as 
part of the Demo accompanied by this report. For demonstration purposes, the qualifier and 
matching algorithm have been integrated with a web-based user interface1 (see Appendix 1 
for usage guidelines). 

The remainder of this report is structured as follows. Section 2 gives overview on qualitative 
representation of sketch maps with an example using the spatial relations Left and Right. 
Section 3 describes the graph matching algorithm developed in T3.3 for the qualitative 
alignment process and Section 4 concludes the report on deliverable D3.5.  

 

2. Qualitative Representation of Input Maps  

                                                 
 
1 https://share4land.itc.utwente.nl:5566/sharing/eoaWuDHjv 
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Qualitative representation of maps involves representing only the relevant distinctions in a 
spatial configuration using qualitative relations. In the area of qualitative spatial reasoning 
(QSR) dozens of representational languages, more commonly called qualitative spatial 
calculi, have been proposed. These calculi formalize spatial configurations using relations 
over the set of spatial entities. For the qualitative representation of input maps, we have 
implemented a qualifier (deliverable D3.3). The qualifier contains a set of modules 
representing spatial relations of the spatial calculi. Each module represents spatial aspects 
such a topology, relative orientation, ordering and distances. For each spatial aspect, the 
implemented qualifier formalizes the spatial configurations of the input maps as QCNs. The 
implemented spatial aspects are: (i) topological relations between polygonal features, (ii) 
topological relations between spatial features of different dimensions, (iii) topological 
relations between linear features, (iv) relative orientation of polygonal features, (v) relative 
orientation of spatial features of different dimensions, (vi) relative orientation of linear 
features, (vii) linear ordering of polygonal features, (viii) relative distances between 
polygonal features. 

The qualitative representation requires geometric representation of input maps. In our 
previous deliverable D3.2, we have demonstrated how our sketch recognition component 
extracts and interprets the drawn object into meaningful geometric entities such as points, 
lines, and polygons. Figure 1 shows a real sketch map example, drawn by a member of the 
Maasai community during one of our field visit in Kenya (early, 2017). The spatial objects in 
the drawn map are automatically extracted using the advanced recognition methods presented 
in [3]. Figure 2 shows the QCNs representing the Left/Right relations between spatial objects 
with respect to rivers in the input maps and possible matches of spatial objects across the 
input maps. These QCNs are use as input for the alignment task. 

 

 
Figure 1. (A) sketch map drawn by community members, (B) Vector representation of sketch map 
using implemented recognition methods in the deliverable D3.2. 
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Figure 2. Vectorized sketch map, corresponding geo-referenced map and qualitative representation of 
input maps as QCNs using the LeftRight relations (left_of, right_of, and crosses). 

 
 

3.  Graph Matching Algorithm  
The matching algorithm used by Smart SkeMa is based on our previous work on sketch map 
alignment reported in [1, 2]. Key to our current approach is the use of relation similarities to 
measure how well any pair of features fit together and the computation of a heuristic e(i,j)|m , 
based on a model we call the local compatibility matrix (LCM) model, to explore the space of 
potentially matching pairs of features, one each from the metric map and sketch map. Here m 
is the current match and (i, j) are a candidate pair to be added to m as explained further 
below. 

The high-level workflow of our approach proceeds as follows: first map features in both 
maps are compared for type similarity. Similar features are paired up to form a subset of the 
cross product of the sets of features from the two maps. The paired features are then 
compared for relation similarity. The similarity values thus computed are then tabulated into 
a matrix indexed on both dimensions by the set of paired features. We refer to this matrix as 
the similarity matrix for the input maps – in the literature (e.g. [7]) this is also referred to as 
the compatibility matrix. The similarity matrix then becomes the input to our matching 
algorithm. We considered two approaches for the matching algorithm design. The first is 
Leordeanu and Herberts [6] spectral graph matching approach based on using the principal 
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eigenvector of the similarity matrix as a global heuristic evaluation function in their 
algorithm. The second approach which we describe in more detail below uses the similarity 
values to compute local heuristic estimates e(i,j)|m and to update a surrogate value function 
that may learn better values of the pairs being matched in the course of executing the 
algorithm. In the remainder of this section, we describe these components of our approach in 
more detail.  

Encoding map similarity 
There exist many approaches to compute feature similarity based on their types and spatial 
relations (see e.g. Chapter 2 of [8] for an overview). In general, both types and relations may 
be viewed as concepts in a domain model. As in most approaches in the literature, we 
compute similarities based on a notion of concept or relation distances. The similarity s is 
derived from the distance d as s = 1 – d. 

Feature type similarity 
There are two approaches for computing concept distances. In the simplest case, two 
concepts either match exactly in which case their distance is 0 or they do not, in which case it 
is 1. The second approach to distance computation is based on the concept hierarchy in our 
domain model. We use Wu and Palmer’s the simple distance measure [5] between two 
concepts. If a and b are two concepts in a concept hierarchy and LCA(a,b) denotes their 
least common ancestor in the hierarchy and h(a) is the height (or depth) of the concept a, 
then their distance is given by 

d(a,b) =  (h(a)+h(b) – 2∙h[LCA(a,b)])/ (h(a)+h(b))     

The similarity values computed using d(a,b) will be in the interval [0, 1).  To pair up features 
we must use a threshold such that all pairs whose similarity is larger than or equal to the 
threshold are paired as similar features. 

Relation similarity  
Relation similarity is computed for each pair among the features paired using the feature 
similarity measure. Suppose as and bs are features in the sketch map and am and bm are 

features in the metric map such that (as , am) and (bs , bm) have be respectively paired up by 

feature type similar. Then for each calculus for which both (as , bs) and (am , bm) have a 

relation specified, the distance between the matches (as , am) and (bs , bm) is given as the 

conceptual neighborhood distance in that calculus between the relations R(as , am)  and R(bs , 

bm) . For more on conceptual neighborhoods for qualitative spatial relations we refer the 
reader to [4, 9].  
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Once we have computed the similarity of all relations between a pair of matches e.g. (as , am) 

and (bs , bm) we aggregate them by taking their weighted average using pre-assigned weights 
for each calculus.  

The similarity matrix 

To tabulate the data into the similarity matrix we index each pair (as , am) by a = as ∙ sizem + 
am , where sizem is the size of the metric map. The matrix entry at then represents the relation 
similarity of pair (a, b) b if a ≠ b or the type similarity of (as , am) if a=b. 

LCM based heuristic for graph matching 
Given a similarity matrix M with real values, one can obtain a binary matrix by applying a 
threshold over the M sending all values below the threshold to 0 and the remainder to 1. 
Commonly referred to as a compatibility matrix this specifies for each possible combination 
of features pairs from the two maps, how well the pairs fit together given the similarity 
threshold. By summing up the number of ones in a row of the compatibility matrix can give 
an indication of the number of other pairs that are compatible with the pair for that row.  

We refine the idea of the compatibility matrix by decomposing the matrix into individual 
rows and reshaping the row into a sizes x sizem matrix where each row represents a sketch 

map feature and each column represents a metric map feature. If a = as ∙ sizem + am is index 

of the row from which the matrix was derived, then the entry at the intersection of row bs and 

column bm has is the value of the entry at b = bs ∙ sizem + bm in the original compatibility 
matrix. We call this new, derived, matrix a Local Compatibility Matrix (LCM) and refer to 
the pair (as , am) as its reference pair. 

The power of the LCM comes in that it allows us to efficiently determine an upper bound on 
the size of any solution (i.e. set of consistent matches) that can include the reference pair of 
the LCM. We denote this upper bound e(i,j)|m and use it as an estimate of the value of using 
the associated pair as candidate to be included in the final set of matches. For more details 
about LCMs and the determination of the values e(i,j)|m we refer the reader to [1, 2]. In the 

next section below we show how e(i,j)|m is used as a heuristic in our matching algorithm. 

Heuristic graph matching with approximate dynamic programming 
The matching algorithm we have designed for D3.5 is conceptually simple. Given the set of 
all candidate pairs (potential matches) pick one with a high value, add it to the current 
solution, and repeat until there are no more pairs available. The function executing the 
algorithm expects to receive a maximum number of iterations for which it must repeat this 
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process each time creating a solution and comparing it with the best previously found 
solution. 

The problem with this hill-climbing technique is that it is possible to get stuck in bad regions 
of the search space since the estimates used may be overly optimistic. To overcome this 
problem we use a so-called ϵ-greedy strategy to pick the next candidate to use. In this 
strategy the best available candidate is chosen in every step except with a small probability ϵ 
a random candidate is chosen and used. While this ensures alternative paths in search space 
are explored every once-in-while, it does provide a way for the algorithm to track how good 
its choices have been up to the current iteration it is executing. We incorporate this capability 
by employing a dynamic programming architecture.  

In approximate dynamic programming [10] a problem is formulated in terms of a system of 
states, where each state has some associated value. The system will transition between states 
in response to actions taken (by a purported agent) in an initial state and arrive in a final state 
at the end of the transition. The goal of the algorithm is to learn to take actions that lead to 
high value states. It learns this by observing a reward after taking each action and using the 
observed reward and the value of resulting state to update its perceived value of being in the 
state from which it took the action. 

We formulate our dynamic program as follows. Each feature in the sketch map will represent 
a level. A state is a pair (a, l) where a is a candidate pair and l is a level. From any state, (a, l) 
say, the algorithm can perform an add action, which adds an eligible candidate, say b, to the 
current solution to arrive in the new state (b, l+1). The reward observed during such a move 
is  

C(a, l)≔ the sum of average relation similarities of pairs in the current solution.   

In fact the reward the cumulative sum of average similarities computed after each action. 
With this reward we then apply the dynamic programming update 

νn(a, l) ← C(a,l) + γ⋅ Σ ℙ(b)[Vn-1(b, l+1) – l] , 

and let 

Vn(a, l) = (1 - α) Vn-1(a, l) + α⋅νn(a, l)  for all states (a, l) visited in the current iteration. 

α is called the stepsize and is used  for smoothing the noise in the approximation νn  above. 
The values are indexed by the superscript n to indicate the iteration in which they are 
encountered. Because the order in which candidates are added does not matter, we propagate 
the values update backwards across the levels as in  

Vn(a, t) = (1 – αl-t+1) Vn-1(a, l) + αl-t+1 ⋅νn(a, l)  for all levels t ≤ l. 



H2020 its4land 687828  D3.5 Implementation of sketch map alignment prototype 

 
 

13 

Vn(a, l) is initialized to ea|∅  for all pairs a and levels l. With these structures set up the 
algorithm now proceeds to iteratively create solutions using the original heuristic as before 
but every kth iteration it uses the learned values instead to see if it can find a better solution 
using the learned values. 

4. Conclusion 
Sketch map alignment is achieved by applying graph matching methods. During the matching 
both the feature types and spatial relations perform a vital role. The alignment of certain 
spatial objects (e.g. mountains, rivers, roads, etc.) become anchoring positions to relate other 
sketched objects and to integrate additionally sketched information into the metric map.  

While the algorithm described in this report performs well in the test cases explored so far, it 
requires correct settings for several parameters if the learned are to be profitably exploited. In 
simple cases, it does not require consulting the learned values but may benefit in long search 
runs such as those that can be performed on its4land’s platform being developed under WP6. 

It is worth noting that the choice of spatial representation has a severe impact on the outcome 
of map alignment. This is because the inherent schematic structure of sketch maps introduces 
inconsistent, albeit, systematic distortions. The algorithm takes the results from deliverable 
D3.3 as input and produces a correspondence-mapping from the sketch map to the metric 
map. In the context of its4land the metric map is a topographic map with both natural and 
man-made features relevant for community-based land tenure documentation. 
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Appendix 1: Web-based User Interface 
The SmartSkeMa system is composed of several components including a system for 
automated recognition and extraction of sketched objects, qualitative representation, and 
qualitative alignment of sketched information. All these components come together to 
provide a single function: integrating the user’s sketch into a base topographic dataset.  
 
In order to demonstrate the functionality of three components (sketch recognition, qualitative 
representation, and alignment), we have implemented a prototype, a web-based user 
interface. The interface takes sketch and geo-referenced maps as an input, processes sketch 
map (D3.2), qualifies input maps (D3.3) and aligns the sketch information (D3.5). The object 
recognition component D3.2 is not fulling integrated in the web-interface. However, we used 
its output in the web-interface to demonstrate the workflow.  
 
Step 1: Load maps 

 
Figure 3. Web-interface for loading sketch and corresponding geo-referenced maps. 

s
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Step 2: Process sketch map  

 
Figure 4. The process recognizes and extracts drawn objects in sketch map and represent them as a 
vector data. 

 

Step 3: Qualify sketch map 

 
Figure 5. The process takes extracted objects in sketch map and generates QCNs along with other 
attributes of the geometries in a standard (*.json) format. 
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Step 4: Qualify metric map 

 
Figure 6. The process takes geo-reference map as an input and generates QCNs along with other 
attributes of the geometries in a *.json) format. 
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Step 5: Qualitative alignment of drawn features 

 
Figure 3. The process aligns spatial objects from sketch map with corresponding object in the geo-
referenced map. The interface allow user to interact with aligned objects by mouse click events. When 
the user clicked on object in sketch map, the corresponding object in the geo-referenced map will 
highlight.  
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