
1

Deliverable 6.1

Technical Report

31 July 2018
Version 1.0

Abstract:

Technical report and software prototype of the mobile image processing system

Project Number: 687828

Work Package: 6

Lead: HL

Type: DEM

Dissemination: Public

Delivery Date: 31 July 2018

Contributors: Christian Timm, Dr. Mohammed Imaduddin Humayun, Stephanie
Walter, Reiner Borchert, Sophie Crommelinck, Claudia Stöcker

This communication reflects only the author’s view and the Commission is not responsible
for any use that may be made of the information it contains.

Its 4 Land
Hengelosestraat 99
Enschede 7500AE

Netherlands
Phone: +31534874532
www.its4land.com

H2020 its4land 687828 D6.1 Image-Processing Platform

2

Copyright © 2018 by the its4land consortium

The its4land consortium consists of the following partners:

University of Twente (UT)
KU Leuven (KUL)
Westfaelische Wilhelms-Universitaet Muenster (WWU)
Hansa Luftbild AG (HL)
Institut d'Enseignement Superieur de Ruhengeri (INES)
Bahir Dar University (BDU)
Technical University of Kenya (TUK)
ESRI Rwanda (ESRI).

Its 4 Land
Hengelosestraat 99
Enschede 7500AE

Netherlands
Phone: +31534874532
www.its4land.com

H2020 its4land 687828 D6.1 Image-Processing Platform

3

Executive Summary

Deliverable D6.1 documents the outcome of task T6.1. Together with Deliverable D6.2 these

are the first deliverables in Work Package 6 Publish and Share. Deliverable D6.1 and D6.2

are both implementations of its4land tools on the common Publish and Share platform.

The aim of task T6.1 is the development of the image-processing system. The image-

processing system provides an easy to use system for boundary delineation based on UAV-

based orthomosaics.

The Publish and Share platform can be considered on the one hand as a runtime environment

for the tools developed in its4land and on the other as provider of data and information for

existing LAS or other tools. Major work in both tasks was the development of the general

Publish and Share platform architecture. The developed architecture allows a mobile usage of

the its4land tools, as well as online usage following a geocloud approach.

The core elements of the Publish and Share architecture are:

 A set of public REST-APIs to interact with the Publish and Share platform

 A Docker based runtime environment for tools developed in Its4land

 A set of data stores for alphanumeric, geo, binary and image data

 OGC services for data dissemination

Task T6.1 adapts the results of the Work Packages 4 and 5 to the Publish and Share platform.

The prototype implementation of the Automate it tool from Work Package 4 is restructured

and modified to operate in the Publish and Share runtime environment and make use of the

Publish and Share APIs.

The implementation of the Automate it tool from Work Package 5 together with the tools and

methods developed in Work Package 4 on the Publish and Share platform is the called image-

processing system.

H2020 its4land 687828 D6.1 Image-Processing Platform

4

Contents

EXECUTIVE SUMMARY 2

ABBREVIATIONS 5

1 INTRODUCTION 6

1.1 THE PUBLISH AND SHARE PLATFORM IN ITS4LAND 6
1.2 MOBILE IMAGE-PROCESSING SYSTEM 8

2 ARCHITECTURE OF THE IMAGE-PROCESSING SYSTEM 9

2.1 OVERVIEW OF THE ARCHITECTURE 9
2.2 TECHNOLOGY STACK USED FOR THE IMAGE-PROCESSING SYSTEM 16

3 ADAPTATION OF THE AUTOMATE IT PROTOTYPE TO THE

PUBLISH AND SHARE PLATFORM 18

3.1 ANALYSIS OF THE EXISTING CODE 18
3.2 REDESIGN OF THE PROTOTYPE CODE 22
3.3 RESTRUCTURING AND REFACTORING OF THE CODE 22

4 OPERATION OF THE IMAGE-PROCESSING SYSTEM 24

4.1 INTEGRATION WITH OTHER WORK PACKAGES 24
4.2 DEPLOYMENT 26
4.3 INTEGRATION OF UAV DATA FROM WORK PACKAGE 4 27

5 CONCLUSION 29

6 BIBLIOGRAPHY 31

H2020 its4land 687828 D6.1 Image-Processing Platform

5

Abbreviations

COTS Commercial off-the-shelf

GDAL Geospatial Data Abstraction Library

GRASS Geographic Resources Analysis Support System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

LADM Land Administration Domain Model

LAS Land Administration System

OAS OpenAPI Specification

OGC Open Geospatial Consortium

ORM Object-relational mapping

REST Representational State Transfer

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

URI Uniform Resource Identifier

WFS Web Feature Service

WMS Web Map Service

H2020 its4land 687828 D6.1 Image-Processing Platform

6

1 Introduction

Its4land is a European Commission Horizon 2020 project funded under its Industrial

Leadership program, specifically the ‘Leadership in enabling and industrial technologies –

Information and Communication Technologies ICT (H2020-EU.2.1.1.)’, under the call

H2020-ICT-2015 – and the specific topic – ‘International partnership building in low and

middle income countries’ ICT-39-2015.

Its4land aims to deliver an innovative suite of land tenure recording tools that respond to sub

Saharan Africa’s immense challenge to rapidly and cheaply map millions of unrecognized

land rights in the region. ICT innovation is intended to play a key role. Many existing ICT-

based approaches to land tenure recording in the region have failed: disputes abound,

investment is impeded, and the community’s poorest lose out. Its4land seeks to reinforce

strategic collaboration between the EU and East Africa via a scalable and transferrable ICT

solution. Established local, national, and international partnerships seek to drive the project

results beyond R&D into the commercial realm. Its4land combines an innovation process

with emerging geospatial technologies, including smart sketch maps, UAVs, automated

feature extraction, and geocloud services, to deliver land recording services that are end-user

responsive, market driven, and fit-for-purpose. The transdisciplinary work also develops

supportive models for governance, capacity development, and business capitalization. Gender

sensitive analysis and design is also incorporated. Set in the East African development

hotbeds of Rwanda, Kenya, and Ethiopia, its4land falls within TRL 5-7: 3 major phases host

8 work packages that enable contextualization, design, and eventual land sector

transformation. In line with Living Labs thinking, localized pilots and demonstrations are

embedded in the design process. The experienced consortium is multi-sectorial, multi-

national, and multidisciplinary. It includes SMEs and researchers from 3 EU countries and 3

East African countries: the necessary complementary skills and expertise are delivered.

Responses to the range of barriers are prepared: strong networks across East Africa are key in

mitigation. The tailored project management plan ensures clear milestones and deliverables,

and supports result dissemination and exploitation: specific work packages and roles focus on

the latter.

1.1 The Publish and Share platform in its4land

“Publish and Share” combines the tools and methods developed in “Draw and Make”, “Fly

and Create” and “Automate it” in a technical platform (see Figure 1).

The Publish and Share platform can be considered on the one hand as a runtime environment

for the tools developed in its4land and on the other hand as provider of data and information

for existing LAS or other tools. The platform will be accessible via service interfaces based

on standards from OGC and W3C. The modelling of the interfaces follows the concepts

introduced by LADM. External systems like LAS or planning systems can use the service

interfaces to integrate data into their own processes, based on specific national rules. The

usage scenarios and workflows to combine the its4land tools with land administration

systems will be defined and implemented to a prototype level in the Deliverable D 6.4.

H2020 its4land 687828 D6.1 Image-Processing Platform

7

Figure 1: Overview of the its4land work packages

The implementation of the Publish and Share platform follows a toolbox approach and will

provide a framework of common APIs and services used by all its4land tools. From this

toolbox, a user can select those its4land tools fitting his tasks best.

As per the paradigm of geocloud, the tools will be implemented as services accessible via an

API based on web standards. Tools that cannot be implemented as a web service, because of

their dependencies on libraries, operating systems and desktop specific user interfaces, can be

operated on their native platform. Tools, which are capable of calling a REST API, can make

use of any kind of Publish and Share service, like public APIs or storage services. Since

these 3rd party tools will be developed outside the scope of its4land, it is the responsibility of

the 3rd tool vendor or creator to adoapt their tools to Publish and Share.

Its4land's claim is the development of state of the art methods for recording land rights with

special consideration of the needs of local stakeholders in developing countries. To achieve a

close integration of local stakeholders, the flexibility to adopt local needs and land tenure

concepts is required. This is achieved through use of the tools and methods on site. With this

in mind, Publish and Share follows two dominant usage scenarios. The first scenario, which

we call mobile (offline), offers end-to-end services provided by the its4land geocloud. These

are not hosted remotely, but locally at the site of usage. It is intended to be used in areas

without network infrastructure.

H2020 its4land 687828 D6.1 Image-Processing Platform

8

In the second scenario, which we call geocloud, services are hosted remotely. These can be

used anytime and anywhere if the network infrastructure allows it.

1.2 Mobile image-processing system

The image-processing system is a subset of the entire Publish and Share platform. The aim of

the mobile image-processing system is to provide an easy to use system for boundary

delineation. The image-processing system allows the in-field or online boundary delineation

based on UAV-based orthomosaics. The UAV images are captured and processed by

photogrammetric tools and methods as part of the workflow in Work Package 4 (Fly and

Create). For details about the integration of Fly and Create into the image-processing system

and the Publish and Share platform see section 4.3.

Work Package 5 will deliver methods for (semi) automated extraction of landmarks and

boundary delineation from UAV data. The Publish and Share platform provides a framework

for integrating these algorithms into standard open source GIS. The in-field processing is an

important aspect of the image-processing system. This allows direct and immediate

participation of local people. The image-processing system is built on an architecture of the

Publish and Share platform that combines a mobile in-field usage with a geocloud

environment. Depending on the available infrastructure and the concrete needs, the image-

processing system can be deployed in different ways to set the focus more on mobile in-field

or geocloud characteristics.

H2020 its4land 687828 D6.1 Image-Processing Platform

9

2 Architecture of the image-processing system

The following section describes the image-processing system architecture. The image-

processing system is created on the Publish and Share platform. The architecture of the

Publish and Share platform is described as far as it is necessary for the understanding of

image-processing system architecture. The Publish and Share APIs mentioned in this section

are described separately and are available via the share4land platform.

2.1 Overview of the architecture

The image-processing system integrates the workflow developed by Work Package 5 into the

technical framework of the Publish and Share platform developed in Work Package 6.

Publish and Share provides the necessary infrastructure to operate the software prototype

described in D5.1 [1] in a mobile and geocloud environment. This prototype implements the

methodology of the image-processing system.

Work Package 6 has developed a unified architecture for the Publish and Share platform for

hosting tools and data developed or created by the different work packages of its4land.

Publish and Share provides a set of services that can be utilized by its4land tools. The main

services of the platform are:

 Runtime environment for executing and managing tools provided by other work

packages

 Storage services for alphanumeric, geo spatial, binary and image data

 OGC services for spatial data access

 Authentication and authorisation services

The services are exposed via Representational State Transfer (REST) API [2]. REST is an

architectural style for distributed systems, especially web services. REST-compliant web

services allow the requesting client to access and manipulate web resources by using a

uniform and predefined set of stateless operations. Web resources are defined and identified

by their URI. Often, a REST API is implemented via the HTTP or HTTPS protocol. The

operations on a resource are defined by the HTTP/HTTPS request methods.

Table 1: HTTP/HTTPS methods

Request method Description

GET Request the specified resource

POST Create a new resource

PUT Replace or create a resource

PATCH Updates a resource

DELETE Deletes a resource

Additional request methods, like HEAD or TRACE are possible but not common. Publish

and Share uses only the request methods documented in Table 1.

H2020 its4land 687828 D6.1 Image-Processing Platform

10

The OpenAPI Specification (OAS) [3] is used to document the its4land REST API in a

standardized form. OAS specifies the REST API in a machine-readable way for describing,

producing, consuming, and visualizing RESTful web services.

Publish and Share provides a web-based client for visualization of spatial and non-spatial

data. This client also includes a user interface to start, stop and monitor the tools

implemented in the runtime environment.

Figure 2: High level architecture of the image-processing system.

deployment Image-Processing Plattform

«executionEnvironment»

Publish and Share Platform

«interface»

Publish and Share Platform::Public and Process API

«executionEnvironment»

Tool Runtime

Automate it prototype

Publish and Share serv ice implemenation

Publish and Share Web GUI Line Labelling Tool

«executionEnvironment»

QGIS

boundary

delineation

«use»

«instantiate»

H2020 its4land 687828 D6.1 Image-Processing Platform

11

Figure 2 provides a high-level overview of the Automate it prototype implemented as part of

the image-processing system on the Publish and Share platform. The main part of the image-

processing system is implemented and hosted in the tool runtime environment. This includes

all the computational parts for data pre-processing and machine learning. Two additional

components are implemented as external applications:

 Labelling of training set data as boundary or no boundary

 Interactive boundary delineation

The labelling tool will be implemented as a standalone web application. The interactive

boundary delineation tool is implemented as a QGIS plugin. Both tools use the Publish and

Share API for retrieving data und storing results.

Primarily, the qualitative data processing system uses base-functionality provided by the

Publish and Share platform as services. The API allows the Automate it prototype to use

service of the Publish and Share platform and to communicate with tools from other Work

Packages in a defined way. Additionally, the qualitative data processing system uses the

runtime environment, which is controlled by the Publish and Share platform.

The runtime environment is based on “Docker” [4]. Docker is used to run software packages

called "containers". In a typical example use case, one container runs a web server and web

application, while a second container runs a database server that is used by the web

application. In another example, multiple containers running the same web application are

started in parallel for scaling issues. Containers are isolated from each other and use their

own set of tools and libraries. All containers use the same kernel and are therefore more

lightweight than virtual machines. Containers are created from "images" which specify their

precise contents. Images are defined by a “dockerfile” (see Figure 3).

H2020 its4land 687828 D6.1 Image-Processing Platform

12

Figure 3: Relationship between Docker file, image and container

cmp Docker

Docker file Docker image

Container 1

Container 2

Container n

«instantiate»

«instantiate»

Defines

«instantiate»

A Docker container has a defined lifecycle. In the Publish and Share platform, this lifecycle

is controlled by the platform. This includes starting, stopping and terminating a container (see

Figure 4). The Publish and Share API allows the tool to communicate with the platform

when the container is running. The container is started asynchronously as a background

process, so even long running calculations will neither block the application nor require a

user to remain logged in to the system for the duration of the run.

H2020 its4land 687828 D6.1 Image-Processing Platform

13

Figure 4: UML State Machine Diagram showing the lifecycle of a Docker containers

stm Docker

Stopped

EntryPoint

Running

Killed

ExitPoint

paused

The container is started

as instance of docker

image

The container is

stopped. But it retains

its internal state

The container is

completely deleted

[kil l]

[unpause]

[start]

[stop]

[build]

[pause]

The platform provides a repository of predefined Docker images. The computational part of

the image-processing system is implemented in one Docker image (see Figure 5).

A Docker image contains furthermore the code for interacting with the Publish and Share

platform to support container management. This includes:

 Logging of errors

 Feedback on the container status

 Feedback on the application status

 Updating the process status

This code is not exclusive to the Automate it image, but is used in every Docker image that

should be used on the Publish and Share platform. The code implements the process interface

and is necessary to manage and monitor a container within the Publish and Share platform.

H2020 its4land 687828 D6.1 Image-Processing Platform

14

Figure 5: Content of the Automate it container

deployment Internal

«executionEnvironment»

Docker container

Ubuntu16.04 core

Python 3.6

Python Libraries

Automate it Publish and Share

integration code

The interaction with the Automate it tools in the container is realised by a GUI implemented

in the Publish and Share web client. For Automate it the GUI allows following interactions

(see Figure 8):

 Create a training set

 Create a classifier

 Predict boundaries

For each interaction the GUI collects the required parameter and starts the associated tool.

The API makes use of a repository that contains the association between the GUI and a

concrete part of the Automate it implementation. This allows one to start the container with

the necessary parameters (see Figure 6).

H2020 its4land 687828 D6.1 Image-Processing Platform

15

Figure 6: UML Sequence Diagram showing the start of the Automate it tool on Publish and Share

sd Sequence

User

Publish and Share

GUI

Publish and Share

API

Runtime

environment

Set status finished()

Update process status()

*Access images etc.()

Start container()

Terminate container()

Request parameter

()

Start process()

Add parameter for session()

Tool GUI()

Store results()

The concept of image based containers allows participating teams to develop the tools

independently from the Publish and Share platform. Tool providers like the Work Packages

3, 4 and 5 can independently develop and deploy their tools. The tools only have to be

registered in the Publish and Share platform once in advance.

The external applications from Automate it, the labelling and interactive delineation tool, are

not executed under the control of Publish and Share. However, both tools use the Publish and

Share API to access required resources. This includes authentication and authorisation, as

well as tool specific data like training or validation sets.

H2020 its4land 687828 D6.1 Image-Processing Platform

16

2.2 Technology stack used for the image-processing system

The technology stack of the image-processing system is defined by the Publish and Share

platform. The Publish and Share platform consists of four layers:

Front-end layer: The front-end layer covers the user clients. The main Publish and Share

web client is implemented as a Single Page Application (SPA) Web-Client (see Figure 7)

[5]. The implementation is done in JavaScript [6] based on the JavaScript frameworks React

[7] and the web mapping framework ExperMaps [8] to visualize geo data from OGC [9]

services like WMS[10] and WFS [11].

Figure 7: UML Sequence Diagram of a SPA Web Application

sd Single Page Application

Load Application

Web Client Web Server Web Services Business Logic

Implemenation

OGC Services

alt

[General Request]

[Spatial Request]

loop Runtime

update DOM

(data/spatial data)

doSomething()

Get(index.html)

«https»

::spatial data

:data

REST Request()

«https»

:data

Start SPA()

WFS/WMS Request()

«https»

Besides using the main SPA client, the image-processing system also includes the QGIS

Plugin and the Line Labelling tool. The Line Labeling tool is planned by Work Package 5 for

future work. The QGIS [12] plugin is developed using Python [13]. The QGIS plugin exists

in two version. The original plugin developed in the frame of Deliverable 5.1 was developed

H2020 its4land 687828 D6.1 Image-Processing Platform

17

on QIS 2 with Python 2.7. As part of the adaptation for Publish and Share, the plugin is

currently migrated to QGIS3 and Python 3.6.

Tool runtime layer: The runtime layer is implemented using Docker. The tools running on

the runtime layer are encapsulated inside the Docker image. Publish and Share makes no

specifications about the internal structure of the image, as long as the tool itself can be

executed via the command line.

Service Layer: The services are accessible via REST API or OGC WMS and WFS services.

The REST API is implemented on the Node.js runtime environment [14] in JavaScript [6].

By its very nature, a platform like Publish and Share requires a large number of different

frameworks and libraries. Most of them are not relevant for the understanding of the

architecture, so we list only the architecturally relevant frameworks and libraries:

 ExperMaps [8]: Provides the necessary services for authentication, authorization,

session management, layer management and the runtime for the REST API

 Swagger [15]: Specifies, document, implement and manage a REST API based on the

OpenAPI Specification (OAS) [3]

 Sequelize [16]: Object-Relational-Mapper (ORM)

 The OGC services are implemented on GeoServer [17]

Data Layer: The data layer provides four kinds of storage classes:

 Object-relational storage

The object-relational storage is implemented in PostgreSQL [18] in combination with

PostGIS [19]. The object-relational database stores any kind of structured alpha-

numeric data and also vector geometries.

 Graph oriented storage

The graph oriented storage is implemented in Neo4J [20]. This storage class is used to

store e.g. constraint networks.

 Object storage

The object storage is implemented in the demonstrator by using Amazon Web Service

S3[21]. In other environments, the Amazon cloud storage service S3 can be replaced

by an S3 compatible open source solution like Mino [22]. The object storage is used

to store any kind of file-based or unstructured data, including images and JSON [23]

files.

 Block oriented file system storage

The block oriented file system storage is implemented by the concrete hosting

platform of Publish and Share and can vary between different sites of installation. In

general this is a UNIX-style file system. It is used for storing files that should not be

stored in the object storage. E.g. images that should be published via GeoServer [17]

H2020 its4land 687828 D6.1 Image-Processing Platform

18

3 Adaptation of the Automate it prototype to the
Publish and Share platform

In the following section we will describe how the existing prototype developed in the

Automate it work package has been adapted to the Publish and Share platform. The

combination of the adapted Automate it prototype and the Publish and Share platform

together forms the image-processing system. The adaptation of the prototype includes

restructuring and refactoring the existing Python code as well as a redesign of the

implementation of some steps of the algorithm. The redesign was necessary to allow the

execution of the tool as an asynchronous background process.

The existing code was implemented in Python[1][13]. This decision of WP5 remains, the

implementation language is still Python.

3.1 Analysis of the existing code

The existing Automate it prototype developed in frame of the deliverable D5.1 concentrates

on the utility of the algorithm. The Publish and Share platform was not available at of

development, so the initial Automate it development code could not take the Publish and

Share API or the runtime environment into account.

To adapt the Automate it prototype to Publish and Share, some redesign, restructuring and

refactoring was necessary. The adaptation is only related to software engineering aspects, it

does not affect the algorithm. The following tasks were included:

 Reorganise the code modules

 Adapt the persistence strategy

 Replace used libraries by ones that fit better to the runtime environment

In a first step, the existing Automate it prototype was documented in the form of an UML

activity diagram (see Figure 8).

19

Figure 8: UML Activity Diagram of the "Automate it" algorithm

act WP5

S
eg

m
en

ta
ti

o
n

T
ra

in
in

g
s

p
h

as
e

P
re

p
ar

at
io

n

Save training set

L
in

e
L

ab
el

in
g

 T
o

o
l

Start

training

«Interactive»

Select Image

Segementation
Binary Contour

Raster

Raster2Vector

«Interactive»

Select Sample by

bounding box

Vector Contour

Lines

Add Training

Attributes
Training set

«Interactive»

Line labelling tool

Start User

validation

Release to line

labelling
«datastore»

Trainingset

untrained

training set

External tool -

not part of

Publish&Share

«datastore»

Images

Image

«datastore»

DSM

Load DSM
DSM

C
re

at
e

C
la

ss
if

ie
r

Input for prediction

phase

Create random

forest classifier

Final trainings

phase

«datastore»

Classifier

Save classifier

Start create

classifier

«Interactive»

Select trained

training set

Create Training Set

Final

Store trained

training set in

Publish and Share

trained

training set
Line Labelling

Final

Continued on next page Continued on next page

Partition

"Segmentation" exist on

both pages for better

readability

H2020 its4land 687828 D6.1 Image-Processing Platform

20

act WP5

D
el

in
ea

ti
o

n
 p

h
as

e
P

re
d

ic
ti

o
n

 P
h

as
e

S
eg

m
en

ta
ti

o
n

Segementation
Binary Contour

Raster

Raster2Vector
Vector Contour

Lines

Start

prediction

phase

«Interactive»

Select Image for

prediction

Create attribute set for

classification
apply rf classifier

classified

validation set

Prediction

phase

final

Start

delineation

phase

«Interactive»

Load Validation Set

Load background image

(corresponding to the

validation set)

validation set image
interactive boundary

delineation in QGIS

potential

boundary line

Store as potential

boundary face string
«datastore»

Boundary Face

Strings

Delineation

phase

final

«datastore»

Unclassified

validation set

«Interactive»

Select classifier
classifier

Input from trainings

phase

Save unclassified

validation set

Load unclassified

validation set

Save classified

validation set

«datastore»

Classified

validation set

«datastore»

Images

«datastore»

Classifier

potential

topographic

elements

Store as topographic

line feature
«datastore»

topographic

line feature

Continued on previous page Continued on previous page

Partition "Segmentation"

exist on both pages for

better readability

21

The purpose of this activity diagram is not to document the algorithm in any detail, as this

was done in D 5.1 [1]. Instead, the purpose is to divide the existing source code into smaller

pieces to identify the objects and control flows inside the source code. This allows identifying

those parts of the algorithms that require an interaction with the Publish and Share platform,

as well as the required data structures. The following interactions are included:

 Storing of results

 Requesting source data, e.g. images

 Storing and accessing intermediate results, e.g. training sets, validation sets or

classifier

 Connecting data to a continuous process

Process steps that require interaction with the Publish and Share platform are coloured in

orange. Steps that require input from the user, e.g. selecting input data are tagged with the

stereotype “interactive”.

The diagram shows that Automate it is not a single process. The diagram is organised in four

main portions (grey horizontal lanes in the Activity Diagram):

 Training set creation

 Classifier creation

 Prediction

 Delineation

The four main partitions represent self-contained blocks of Automate it, with a defined input

and distinct input and output. Each of these blocks is defined by a separate entry point.

From a software engineering perspective, these blocks can be implemented in different ways:

 Individual executables with input parameters

 API of an executable that acts as a server

 One main executable with different sets of parameters

The already existing code was structured into individual scripts that have to be executed by

the user. Since much of the original source code was to be retained, an encapsulating of the

existing script promised to be the best approach. Therefore, we decided to restructure and

refactor the code following the approach of one main executable with different sets of

parameters.

Furthermore, there are two additional partitions:

 Segmentation

 Line labelling

The segmentation partition represents a significant section of the Automate it code that is

shared by different parts of the algorithm. The line labelling lane represents the external tool

for the interactive training of the training set. This tool is required for the overall process of

H2020 its4land 687828 D6.1 Image-Processing Platform

22

interactive boundary delineation, but is only weakly coupled with the Publish and Share

platform. Therefore it is treated as an external tool that can be replaced by others tools

without affecting the image-processing system.

3.2 Redesign of the prototype code

The existing code of the Automate it prototype needs some redesign to be used in the runtime

environment. The most import redesign affects the segmentation part of the algorithm. The

segmentation separates the raster data into areas of similar colour and texture, called

“superpixels”. The edges of these polygons are potential boundaries, but probably most of

them represent other structures.

The original code uses a Matlab script for detecting the contour lines in the image. The use

of Matlab in the Publish and Share environment leads to some restrictions. First, Matlab is

proprietary software that requires a commercial licence for the aspired usage scenario. The

nature of Publish and Share as a dissemination platform for the results of its4land does not

allow to identify the individual users for named user licences. A named user licence would

also contradict the concept of asynchronous background processing. A concurrent licence

does not seem to cover the usage scenario of Publish and Share, which intends the use of the

platform in different pilot countries. Furthermore, the use of a proprietary software

contradicts the idea of open source and the public availability of the tools developed in

its4land.

From a technical point of view, the use of Matlab scripts in the interactive Matlab

environment does not suit the concept of the runtime environment well, since it increases the

size of the Docker image significantly and therefore increases the resource consumption and

the starting time of the container. Both are critical values, since the image-processing system

should also operate mobile in the field, where only limited hardware resources are available.

In the code of Automate it which is used for the image-processing system, the Matlab script

is replaced by the open source tool “GDAL Segmentation”, a command line tool developed

by Cristian Balint [24]. This tool analyses a raster file, creates superpixels of customizable

size, and stores the result file in a vector format (Shape or GeoJson).

3.3 Restructuring and refactoring of the code

The existing Python code of the Automate it prototype was developed in Python 2.7, for

compatibility with the current version of QGIS 2 at that time. It was recommended to

implement the new project in Python 3 [13], since Python 2.7 has nearly reached the end-of-

life status [25] and QGIS 3 was launched in the meantime. The original source code was not

designed to be accessible in a server environment or Docker container. Intermediate data is

stored in shape files, configured with hard coded absolute local paths. The tool frequently

uses GRASS functions, which are part of the QGIS 2.x package. These functions expect layer

files (mostly shape format) as input and produce on their part layer files as output.

H2020 its4land 687828 D6.1 Image-Processing Platform

23

The following measures were undertaken to adopt the original source code to the Publish and

Share platform:

 Converting the source code to Python 3.6

 Replacement of GRASS/QGIS functions by OGR/GDAL libraries, which are

accessible without a QGIS installation

 Adaption for operating inside the container and server environment

 Storing configuration in JSON [23] structures.

 Adding of logging and error handling

 Avoiding temporary and permanent shape files. Geometric data structures like

training sets or validation sets are stored in GeoJSON structures.

 Removing all persistent file storage in the local file system to make the container

stateless.

 Persistence of data structures done via the Publish and Share API.

 Optimization of performance, effectivity, consistency, and clearness

 Converting the QGIS plugin to Python 3.6, QGIS 3, and PyQt 5

After this measures, the Automate it tool is structured in Python modules as follows:

The control flow is implemented in the main module, which is also the entry point to access

the tool. Command line parameters can be used to distinguish between the three main lanes:

 -train: Creation of a training set from raster data; requires 3 further input parameters

(raster data, RGB data, DSM data); output: calculated training set

 -class: Creation of a Random Forest classifier; input parameter: a calculated training

set; output: a classifier

 -pred: Prediction of the boundary probability; input: raster data, RGB data, DSM

data, classifier; output: a classified validation set

The modules “Segments2Lines” and “AttributeCalculation” are used for the preparation of

training and validation sets. These modules process the result of the external segmentation

tool to create calculated line vectors for the determination of parcel boundaries.

The module “Classification” creates Random Forest classifiers from training sets and applies

existing classifiers to validation sets.

No QGIS/GRASS functions are used anymore, instead the GDAL libraries are used.

The interactive part of the WP5 application is implemented as a plugin for QGIS, called

“BoundaryDelineation”. As intended, the plugin is now configured for Python 3.6, QGIS 3.0

and PyQt 5. The user loads the underlying raster file and a classified validation set. Both

resources are served by the Publish and Share API. With these resources, the user is

requested to determine cadastral and topographic boundary lines.

H2020 its4land 687828 D6.1 Image-Processing Platform

24

4 Operation of the image-processing system

The following section discusses operational aspects of the image-processing system. This

includes its integration with the other work packages of its4land and potential deployment

strategies.

4.1 Integration with other work packages

The overall aim of its4land is the development of a set of tools to support land tenure

registration in developing countries, by introducing innovative methods.

Error! Reference source not found. shows the relationship between the different technical

work packages of its4land. The image-processing system uses UAV-based orthomosaics as

input for the boundary delineation. It produces a) boundary facestrings and b) unclassified

topographic linear features. The boundary facestrings are boundaries according to the LADM

standard [26]. Publish and Share makes these boundaries available to an LAS. In the LAS

these boundaries can be used in the registration process to generate spatial units. The

unclassified topographic linear features can be used in the qualitative alignment process in

Draw and Make. Draw and Make uses topographic features to identify and locate sketch

maps. During this process Draw and Make can identify previously unclassified topographic

linear features and update their qualification. All sharing of data is done via the Publish and

Share platform The exchange of data between Automate it and Draw and Make can increase

the quality of the alignment process over time.

25

Figure 9: Relationship between the technical work packages of its4land

act Integration

F
ly

 a
n

d
 m

a
k

e
D

ra
w

 a
n

d
 c

re
a

te
A

u
to

m
a

t
it

P
u

b
li

s
h

 a
n

d
 S

h
a

re

ActivityInitial

ActivityInitial

Fly

RAW data

Process images
Ortho mosaic

Store ortho mosaic

«datastore»

Ortho mosaics

Get ortho mosaic
Perception Deleniation

LADM boundary

facestring

topograpchic line

feature

Sav e LADM boundary

face string

Sav e topographic line

feature

«datastore»

topographic line

feature

«datastore»

boundary

facestring

Qualitativ e Alignment
Training Phase Activ ity Metric Map

Qualification
Sketch Map Recognition Sketch Map Qualification

Update metric map

feature

Geometric

Approximation Spatial Units

Store Spatial Units

«datastore»

Spatial Units

Publish for LAS

26

4.2 Deployment

The preferred usage scenario for Publish and Share is its online use in the geocloud. The

developed architecture however also supports a complete offline on-premise deployment and

use, e.g. for data processing while in the field or on a mission.

Figure 10: Layered architecture of Publish and Share

Depending on the usage scenario, two ways of deployment exist:

Mobile (offline):

 All Layers are deployed on a single (self-contained) infrastructure

 Hyper-converged infrastructure (A software-defined IT infrastructure that virtualizes

all of the elements of conventional "hardware-defined" systems)

H2020 its4land 687828 D6.1 Image-Processing Platform

27

Geocloud (online)

 Data and Service layer implemented on the cloud service

 Tool Runtime layer implemented on the cloud service

 Front-end layer (Publish and Share Web Client) served by cloud service, executed on

local front end machines

 Front-end layer (Desktop or external tools) installed and executed on local front end

machines.

 Demonstrator on Amazon Web Services

The source code will be available on the its4land GitHub account. This repository is under

active development and represents actual source code on a daily base. The repository is the

source for the build process, which compresses the source code. The resulting “built” version

of the Publish and Share demonstrator can be deployed to the test environment. The test

environment is currently implemented on the Amazon Web Services infrastructure.

At the time of writing this report the infrastructure consist of these building blocks:

 1 EC2 Instance for the Service Layer.

 1 EC2 Instance for the Runtime Layer

 1 RDS Instance for hosting the PostgreSQL data base

 1 EC2 Instance for hosting the shared file system and Neo4J

 1 S3 bucket as object storage

The current source code is optimized for operating in the selected cloud environment. It

needs to be adapted for on premise deployment or deployment on other cloud environments.

Since the complete source code is available, this necessary adaptation can be done by the

operator of the target environment.

4.3 Integration of UAV data from Work Package 4

The image-processing system requires orthomosaics as input for the process of boundary

delineation. In the context of its4land, these input data are provided as UAV data. The UAV

data are captured and processed by tools and methods developed in Work Package 4 which

are considered as part of the image-processing system.

Both Work Packages are integrated via the Publish and Share platform (see Figure 9). The

Work Package 4 has developed a workflow to process the images captured by UAV. This

workflow is actually based on the COTS software Pix4D. The version of Pix4D used in

its4land is a Microsoft Windows desktop version. This kind of software cannot operate in the

Publish and Share Runtime Environment, since Pix4D requires a direct interaction with the

user and cannot operate asynchronously in the background.

Therefore, the Work Packages 4 tools and methods are treated as part of the frontend layer.

Pix4D operates as an independent client (see Figure 10). As a COTS software, an adaption of

Pix4D to use the Publish and Share API directly is not possible. The interaction with the

Publish and Share platform can be done via the Publish and Share Web Client. The Web

Client can be used for upload, download and publishing data.

H2020 its4land 687828 D6.1 Image-Processing Platform

28

Work Package 4 is evaluating the alternative software OpenDroneMap [27] as a replacement

for Pix4D. OpenDroneMap is an open source software for processing UAV data. The

software operates on several variations of the Linux operating system and can be used

without user interaction.

If Work Package 4 migrates the workflow from Pix4D to OpenDroneMap, the process of

image processing could be also implemented as a tool on the Publish and Share Tool Runtime

Environment.

H2020 its4land 687828 D6.1 Image-Processing Platform

29

5 Conclusion

In task T6.1 we are developing an image-processing system for hosting the tools for

boundary delineation on UAV orthomosaic. Developed on the Publish and Share platform, it

will provide a scalable runtime environment, a unified set of services for data management

and interaction with tools developed in other work packages.

The most challenging part was the definition of an architecture that allows both, mobile

offline and geocloud online use. Most parts of the qualitative data processing require

significant computing capacities and hardware devices (large format scanner) that are not

suitable for in-field usage. The importance of a mobile (offline) usage of the platform seems

to be decreasing. Therefore we recommend to focus the future development on the geocloud

online model.

Currently the testing and deployment capacities for Publish and Share and the image-

processing system are very limited, because Work Package 6 has no budget for acquiring its

own hard- and software or use a commercial cloud provider. Currently Publish and Share is

going to be implemented on an Amazon Web Service infrastructure. The financing of the

operation has still to be clarified. We recommend providing a budget for an appropriate

testing and deployment infrastructure.

The use of the Amazon Web Services as infrastructure is in line with the geocloud approach.

From a purely technical perspective, the Amazon infrastructure works very well.

Nevertheless, we recommend evaluating other hosting alternatives. Various factors will

influence such an evaluation. For example, without claim to completeness:

 The costs of an alternative (both for implementation, and on for operation). As well as

the balance between costs and benefits.

 Technical suitability and the planned usage scenario.

 Transparency and security issues.

 Privacy and compliance policies.

The image-processing system makes use of two COTS software products (Pix4D and Matlab.

We recommend replacing both products by open source alternative. Fist tests for the

replacement of Matlab with GDAL have been made. The results indicate that GDAL could

fully replace Matlab. Work Package 4 is currently evaluating the software OpenDroneMap to

replace Pix4D.

The development of the architecture was impeded by lack of clear usage scenarios. Who will

use the system? What is the concrete problem to solve? We recommend defining several

problem oriented use cases that clearly describe a business problem and how to solve it with

the its4land tools.

The Publish and Share platform will be developed continuously together with the other work

packages. Focus will be on the stabilization and improvement of the API and on the GUI to

enhance the user experience.

H2020 its4land 687828 D6.1 Image-Processing Platform

30

The next two deliverables of Work Package 6 focus more on the dissemination aspect of

Publish and Share.

Deliverable 6.3 will extend Publish and Share to handle the approximated geometries from

the qualitative data processing system according to the LADM extension developed in Work

Package 3.

Deliverable 6.4 will define a workflow and interface to publish the output of the different

work packages to a LAS. This will also include the common GUI in Publish and Share to

integrate the different tools.

H2020 its4land 687828 D6.1 Image-Processing Platform

31

6 Bibliography

[1] S. Crommelinck, M. Koeva, M. Ying Yang, G. Vosselman, S. Ho, I. Buntinx, J.

Crompvoets, K. Kundert, J. Sahib, and G. Wayumba, “Technical report and software

prototype on methods to automatically map features in orthoimages. its4land

Deliverable 5.1,” Enschede, 2018.

[2] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” University of California, Irvine, 2000.

[3] SmartBear Software, “OpenAPI Specification Version 2.0,” 2014. [Online]. Available:

https://swagger.io/specification/v2/.

[4] “Docker Homepage.” [Online]. Available: https://www.docker.com/.

[5] D. Flanagan, JavaScript: The Definitive Guide 6th Edition. 2011.

[6] ECMA International, “ECMAScript® 2018 Language Specification,” Geneva, 2018.

[7] “React. A JavaScript library for building user interfaces,” 2018. [Online]. Available:

https://reactjs.org/.

[8] “ExperMaps,” 2018. [Online]. Available: http://www.expermaps.de/en/.

[9] “Open Geospatial Consortium (OGC),” 2018. [Online]. Available:

http://www.opengeospatial.org/.

[10] OGC, “Web Map Service (WMS),” 2018. [Online]. Available:

http://www.opengeospatial.org/standards/wms.

[11] OGC, “Web Feature Service (WFS).” [Online]. Available:

http://www.opengeospatial.org/standards/wfs.

[12] “QGIS,” 2018. [Online]. Available: https://www.qgis.org/en/site/.

[13] “Python,” 2018. [Online]. Available: https://www.python.org/.

[14] “node.js,” 2018. [Online]. Available: https://nodejs.org/en/.

[15] “Swagger,” 2018. [Online]. Available: https://swagger.io/.

[16] “Sequelize.” [Online]. Available: http://docs.sequelizejs.com/.

[17] “GeoServer Homepage,” 2018. [Online]. Available: http://geoserver.org/.

[18] “PostgreSQL Homepage,” 2018. [Online]. Available: https://www.postgresql.org/.

[19] “PostGIS Homepage,” 2018. [Online]. Available: https://postgis.net/.

H2020 its4land 687828 D6.1 Image-Processing Platform

32

[20] “Neo4J Homepage,” 2018. [Online]. Available: https://neo4j.com/.

[21] “Amazon Web Services S3 Homepage,” 2018. [Online]. Available:

https://aws.amazon.com/s3/?nc1=h_ls.

[22] “Mino Homepage,” 2018. [Online]. Available: https://www.minio.io/.

[23] Internet Engineering Task Force, “RFC 8259: The JavaScript Object Notation (JSON)

Data Interchange Format.” 2017.

[24] C. Balint, “github Repository.” [Online]. Available: https://github.com/cbalint13/gdal-

segment.

[25] “Python 2.7 Release Schedule.” [Online]. Available:

https://www.python.org/dev/peps/pep-0373/.

[26] ISO/FDIS 19152, “Geographic information - Land Administration Domain Model

(LADM),” vol. 2012, pp. 1–118, 2012.

[27] “OpenDroneMap.” [Online]. Available: https://www.opendronemap.org/.

[28] “OpenStack.” [Online]. Available: https://www.openstack.org/.

