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Executive Summary 

 
Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure 

data. UAVs can capture geospatial data at high quality and resolution in a cost-effective, 

transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral 

boundaries are delineable. This delineation is not fully automated, even though physical objects 

automatically retrievable through image analysis methods mark a large portion of cadastral 

boundaries.  

 

WP5 contributes to advancements in developing a corresponding methodology for UAV-based 

delineation of visible cadastral boundaries. It is designed for areas, in which object contours 

are clearly visible and coincide with cadastral boundaries. The methodology partly automates 

and facilitates the delineation of visible cadastral boundaries as follows: it combines image 

analysis methods, namely Globalized Probability of Boundaries (gPb) contour detection and 

Simple Linear Iterative Clustering (SLIC) superpixels. The approach chosen is realized based 

on a Random Forest (RF) classification combining feature information into a cost value per 

SLIC line, i.e., assigning low cost values to road outlines. The user-selected nodes are then 

connected along the least-cost path of weighted SLIC lines. The interactive part allows the user 

to edit and finalize the lines. It is implemented as a publically available QGIS plugin. 

 

This report focusses on technical aspects of the described methodology and provides details on 

methods and implementations. 
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Abbreviations 
 

DSM Digital Surface Model 

DTM Digital Terrain Model 

GCP Ground Control Points 

GIS Geographical Information System 

GNSS Global Navigation Satellite System 

gPb Globalized Probability of Boundaries 

GSD Ground Sample Distance 

GUI Graphical User Interface 

RF  Random Forest 

RGB Red Green Blue 

SLIC Simple Linear Iterative Clustering 

UAV Unmanned Aerial Vehicle 

 

 



H2020 its4land 687828  D5.1 Technical Report 

 

 

 

6 

1. Introduction  
 

its4land is a European Commission Horizon 2020 project funded under its Industrial 

Leadership program, specifically the ‘Leadership in enabling and industrial technologies – 

Information and Communication Technologies ICT (H2020-EU.2.1.1.)’, under the call H2020-

ICT-2015 – and the specific topic – ‘International partnership building in low and middle 

income countries’ ICT-39-2015.  

 

Its4land aims to deliver an innovative suite of land tenure recording tools that respond to sub 

Saharan Africa’s immense challenge to rapidly and cheaply map millions of unrecognized land 

rights in the region. ICT innovation is intended to play a key role. Many existing ICT-based 

approaches to land tenure recording in the region have failed: disputes abound, investment is 

impeded, and the community’s poorest lose out. its4land seeks to reinforce strategic 

collaboration between the EU and East Africa via a scalable and transferrable ICT solution. 

Established local, national, and international partnerships seek to drive the project results 

beyond R&D into the commercial realm. its4land combines an innovation process with 

emerging geospatial technologies, including smart sketchmaps, UAVs, automated feature 

extraction, and geocloud services, to deliver land recording services that are end-user 

responsive, market driven, and fit-for-purpose. The transdisciplinary work also develops 

supportive models for governance, capacity development, and business capitalization. Gender 

sensitive analysis and design is also incorporated. Set in the East African development hotbeds 

of Rwanda, Kenya, and Ethiopia, its4land falls within TRL 5-7: 3 major phases host 8 work 

packages that enable contextualization, design, and eventual land sector transformation. In line 

with Living Labs thinking, localized pilots and demonstrations are embedded in the design 

process. The experienced consortium is multi-sectorial, multi-national, and multidisciplinary. 

It includes SMEs and researchers from 3 EU countries and 3 East African countries: the 

necessary complementary skills and expertise is delivered. Responses to the range of barriers 

are prepared: strong networks across East Africa are key in mitigation. The tailored project 

management plan ensures clear milestones and deliverables, and supports result dissemination 

and exploitation: specific work packages and roles focus on the latter. 

 

1.1. Application of Unmanned Aerial Vehicles 
 

Unmanned Aerial Vehicles (UAVs) have emerged as rapid, efficient, low-cost and flexible 

acquisition systems for remote sensing data [1]. The data acquired can be of high-resolution 

and accuracy, ranging from a sub-meter level to a few centimes [2,3]. A photogrammetric UAV 

workflow includes flight planning, image acquisition, image orientation and data processing. 

The results include Digital Terrain Models (DTMs), Digital Surface Models (DSMs), 

orthoimages and point clouds [4]. UAVs are described as capable sourcing tools for remote 

sensing data, since they allow flexible maneuvers, capture of high-resolution imagery, flights 

under clouds, easy launch and landing and fast data acquisition at low cost. Disadvantages 

include payload limitations, uncertain or restricting airspace regulations, battery induced short 

flight duration, and time consuming processing of large volumes of data gathered [5,6]. In 

addition, multiple factors that influence the accuracy of derived products require extensive 

consideration. They include the quality of the camera, the camera calibration, the number and 
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location of ground control points and the choice of processing software [7]. UAVs have been 

employed in a variety of applications such as the documentation of archaeological sites and 

cultural heritage [8,9], vegetation monitoring in favor of precision agriculture [10,11], traffic 

monitoring [12], disaster management [13,14] and 3D reconstruction [15].  

 

Another emerging application field for UAV-based surveys is cadastral mapping. Cadastral 

maps are spatial representations of cadastre surveys, showing the extent, value and ownership 

of land [16]. Cadastral maps are intended to provide a positional description and identification 

of land parcels, which are crucial for a continuous and sustainable recording of land rights [17]. 

Furthermore, cadastral maps support land and property taxation, allow the development and 

monitoring of a land markets, support urban planning and infrastructure development and allow 

the production of statistical data. An extensive review on concepts and purposes of cadasters 

in relation to land administration is provided in [18,19]. UAVs are proposed as a new tool for 

fast and cheap spatial data acquisition and production enabling the production of cadastral 

maps. UAVs facilitate land administration processes and contribute to securing land tenure 

rights and provide a new approach to the establishment and updating of cadastral maps [20]. 

This contributes to new concepts in land administrations such as fit-for-purpose [21], pro-poor 

[22] and responsible land administration [23]. 

 

1.2. Application of UAV-based Cadastral Mapping 
 

In the context of contemporary cadastral mapping, UAVs are increasingly emerging as tools to 

generate accurate and georeferenced high-resolution imagery. From these image data, cadastral 

boundaries can be visually detected and digitized [24-26]. In order to support digitization, 

existing parcel boundaries can be automatically superimposed, which could facilitate and 

accelerate cadastral mapping [27]. With the exception of [1,28], cadastral mapping is not 

mentioned in review papers as one of the application fields of UAVs [29-31]. This might be 

due to the small number of case studies in this field, the often highly prescribed legal 

regulations relating to cadastral surveys, and the novelty of UAV in mapping generally. 

Nevertheless, all existing case studies underline the high potential of UAVs for cadastral 

mapping – in both urban and rural contexts for developing and developed countries. 

 

In developing countries, cadastral mapping contributes to the creation of formal systems for 

registering and safeguarding land rights. According to the World Bank and the International 

Federation of Surveyors (FIG), 75% of the world’s population do not have access to such 

systems. Further, they state that 90 countries lack land registration systems, while 50 countries 

are in the process of establishing such systems [21]. In these countries, cadastral mapping is 

often based on ground survey methods or on partly outdated or unrectified aerial or satellite 

imagery of low-resolution, which can include areas covered by clouds. Numerous studies have 

investigated cadastral mapping based on orthoimages derived from satellite imagery [23,32-

38] or aerial photography [39]. The definition of boundary lines is often conducted in a 

collaborative process among members of the communities, governments and aid organizations, 

which is referred to as ‘Community Mapping’ [40], ‘Participatory Mapping’ [23] or 

‘Participatory GIS’ [32]. Outdated satellite imagery of low-resolution can be substituted for 

up-to-date high-resolution orthoimages derived from UAVs as is shown in case studies in 
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Namibia [25] and Rwanda [24]. The latter case shows the utility of UAVs to partially update 

existing cadastral maps. 

 

In developed countries, the case studies focus on the conformity of the UAV data’s accuracy 

with local accuracy standards and requirements [41,42]. Furthermore, the case studies tend to 

investigate possibilities of applying UAVs to reshape the cadastral production line efficiency 

and effectiveness [7,43,44]. When applying UAVs, manual boundary detection with all 

stakeholders is conducted in an office, eliminating the need for convening all stakeholders on 

the parcel. In developed countries, UAV data are frequently used to update small portions of 

existing cadastral maps rather than creating new ones. Airspace regulations are the most 

limiting factor that hinder the thorough use of UAVs. Currently, regulatory bodies face the 

alignment of economic, information and safety needs or demands connected to UAVs [31,45]. 

Once these limitations are better aligned with societal needs, UAVs might be employed for 

land administration, as well as for further purposes such as the monitoring of public 

infrastructure like oil and gas pipelines, power lines, dikes, highways, and railways [46]. 

Nowadays, some national mapping agencies in Europe integrate, but mainly investigate, the 

use of UAVs for cadastral mapping [45]. 

 

Overall, UAVs can be employed to support land administration both in creating and updating 

cadastral maps. The entirety of case studies confirms that UAVs are suitable as an addition to 

conventional data acquisition methods in order to create detailed cadastral maps including 

overview images or 3D models [41,42,47]. The average geometrical precision is shown to be 

the same, or better, compared to conventional terrestrial surveying methods [7]. UAVs will not 

substitute conventional approaches, since they are currently not suited to map large areas such 

as entire countries [48]. The use of UAVs supports the economic feasibility of land 

administration and contributes to the accuracy and completeness of cadastral maps. 

 

1.3. Boundary Delineation for UAV-based Cadastral Mapping 
 

In published case studies, cadastral boundaries are manually detected and digitized from 

orthoimages. This is realized either in an office with a small group of stakeholders – for one 

parcel or in a community mapping approach for several parcels at once. None of the case 

studies applies an automatic approach to extract boundary features from the UAV data. An 

automatic or semi-automatic feature extraction process would facilitate cadastral mapping: 

manual feature extraction is generally regarded as time-consuming, wherefore an automation 

will bring substantial benefits [4].  

 

Jazayeri et al. (2014) state that UAV data are an accurate and low-cost approach for automated 

object reconstruction and boundary extraction. This is especially true for visible boundaries, 

physically manifested by objects such as hedges, stone walls, large scale monuments, 

walkways, ditches or fences, which often coincide with cadastral boundaries [50,51]. Such 

visible boundaries bear the potential to be automatically extracted from UAV data. However, 

to the best of the authors’ knowledge, no research has been done on expediting cadastral 

mapping through automatic boundary delineation from UAV data. 
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1.4. Cadastral Boundary Characteristics 
 

Different approaches exist to categorize concepts of cadastral boundaries. The lines between 

the different categories visualized in Figure 1 can be understood as fuzzy. From a technical 

point of view, cadastral boundaries can be divided into two categories: (i) fixed boundaries, 

whose accurate spatial position has been recorded and agreed upon and (ii) general boundaries, 

whose precise spatial position is left undetermined [52]. Both require surveying and 

documentation in cadastral mapping.  

 

Cadastral surveying consists of (i) direct techniques, in which the accurate spatial position of 

a boundary is measured and fixed on the ground using theodolite, total stations and Global 

Navigation Satellite System (GNSS); and (ii) indirect techniques, in which remotely sensed 

data such as aerial or satellite imagery are applied with minimal ground verification. The spatial 

position of boundaries is derived from these data in a second step [33]. Fixed boundaries are 

commonly measured with direct techniques, which provide the required higher accuracy. 

Indirect techniques, including UAVs, are able to determine fixed boundaries only in the case 

of high-resolution data. Indirect techniques are mostly applied to extract visible boundaries 

through image interpretation and boundary tracing. These boundaries are represented by 

physical objects, which coincide with the concept of general boundaries [50,51]. 

 

In Kenya for example, the general boundaries were originally derived from ground survey 

methods of chain, campus and plane table. These boundaries were instantly drawn onto a sheet 

of paper attached to the plane table. This method was later found to be too slow for the vast 

area to be covered and the government reverted to the use of aerial photos. Initially, these 

photos were ortho-rectified to take care of tilt and relief distortions. These surveys were carried 

out in the Central Region of Kenya at the time of the Mau Mau wars in order to check the 

quality of the Plane Table surveys.  

 

The ortho-rectifications were carried out in London as the technology was not yet available in 

Kenya. This process was later abandoned as it was too slow and expensive for the African 

peasants who were eagerly waiting for first registration. The government thereafter used simple 

tracings from the photos to produce temporary and interim maps called the Preliminary Index 

Diagrams (PIDs) for the first registration [53]. These PIDs are still being used for registration 

of  land adjudicated areas to the present day. 

 

This report concentrates on methods delineating general, i.e., visible cadastral boundaries from 

high-resolution data applying indirect surveying techniques. The methods are intended to 

automatically extract boundary features from UAV data. 
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Figure 1. Overview of cadastral surveying techniques and cadastral boundary concepts that 

contextualize the scope of this research. The lines between different categories are fuzzy and should 

not be understood exclusively. They are drawn to give a general overview. 

 

In order to understand, which visible boundaries define the extents of land and to identify 

common boundary characteristics, literature on 2D cadastral mapping – based on indirect 

techniques – was reviewed. Man-made objects are found to define cadastral boundaries as well 

as natural objects. Studies name buildings, hedges, fences, walls, roads, footpaths, pavement, 

open areas, crop type, shrubs, rivers, canals and water drainages as cadastral boundary features 

[7,25,32,33,35,54-56]. Trees are named as the most limiting factor since they often obscure the 

view of the actual boundary [42,57].  

 

No study summarizes characteristics of detected cadastral boundaries, even though it is 

described as crucial for feature recognition to establish a model describing the general 

characteristics of the feature of interest [58]. Common in many approaches is the linearity of 

extracted features. This may be due to the fact that some countries do not accept curved 

cadastral boundaries [34]. Even if a curved river marks the cadastral boundary, the boundary 

line is approximated by a polygon [33].  

 

When considering named features, the following characteristics can be observed: most features 

have a continuous and regular geometry expressed in long straight lines of a limited curvature. 

Furthermore, features often share common spectral properties, such as similar values in color 

and texture. Moreover, boundary features are topologically connected and form a network of 

lines that surround land parcels of a certain (minimal) size and shape. Finally, boundaries can 

be indicated by a special distribution of other objects such as trees. In summary, general 

boundary features are detectable based on their geometry, spectral property, topology, and 

context. 

 

This report focusses on methods that extract linear boundary features, since cadastral 

boundaries are commonly represented by straight lines with exceptions outlined in [59,60]. 

Cadastral representations in 3D as described in [61] are excluded.  
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UAVs cannot detect all cadastral boundaries. Only visible boundaries that are detectable with 

an optical sensor can be extracted using UAVs. This approach does not consider socially 

perceived boundaries not marked by a physical object.  

 

Figure 2 provides an overview of visible boundary characteristics mentioned above and 

commonly raised issues in terms of their detection. The cadastral boundaries are derived based 

on (a) roads, power lines and pipelines [48]; (b) fences and hedges [25]; (c), (d) crop types 

[42]; (f) roads, foot paths, water drainage, open areas and scrubs [62] and (e) adjacent 

vegetation [57]. Figure 2 (d) shows the case of a nonlinear irregular boundary shape. The 

cadastral boundaries in (e) and (f) are often obscured by tree canopy. Cadastral boundaries in 

(a), (b), (c) and (d) are derived from UAV data; in (e) and (f) from HRSI. All of the boundaries 

are manually extracted and digitized. 

 

 
Figure 2. Characteristics of cadastral boundaries extracted from high-resolution optical remote sensors.  

1.5. Boundary Delineation Workflow 
 

In past work, a hypothetical generalized workflow for the automatic extraction of visible 

cadastral boundaries has been proposed [63]. It was derived from 89 studies that extract 

physical objects related to those manifesting cadastral boundaries from high-resolution optical 

sensor data. The synthesized methodology consists of image segmentation, line extraction and 

contour generation (Figure 3).  

 

For image segmentation, globalized probability of boundary (gPb) contour detection was found 

to be applicable for an initial detection of visible boundaries. However, this method does not 

enable the processing of large images. Therefore, the UAV data were reduced in resolution, 

which consequently led to a reduced localization quality [64]. The localization quality at the 

locations of initially detected candidate boundaries is improved through the following: for line 

extraction, simple linear iterative clustering (SLIC) superpixels were found to coincide largely 

with object boundaries in terms of completeness and correctness [65]. For contour generation 

gPb contour detection and SLIC superpixels are combined with machine learning and 
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processed in a semi-automatic procedure that allows a subsequent delineation of visible 

boundaries. This report describes each of these workflow steps in detail. 

 

 

 
Figure 3. Sequence of a commonly applied workflow proposed in [63]. The workflow aims to extract 

physical objects related to those manifesting cadastral boundaries from high-resolution optical sensor 

data. 

 

1.6. Report Objective and Structure 
 

The literature review shows that automating UAV-based cadastral mapping is little 

investigated and bears potential to make cadastral mapping more reproducible, transparent, 

automated, scalable and cost-effective. Addressing this research gap is the aim of WP5 in the 

its4land project. This is done by designing and implementing a methodology for an automated 

delineation of visible cadastral boundaries from UAV data. This report describes the current 

functioning of such a methodology and provides implementation details.  

 

The report is structured according to the main workflow steps visualized in Figure 4. Its 

implementation is summarized in Table 1 and available in [66]. Each of its main steps, i.e., 

data pre-processing, machine learning, and interactive outlining, is one section in the report. 

Each section, i.e., each workflow step, is divided into a description of its background and its 

practical realization with regards to the methodology development. The background part 

describes motivation and methods of each workflow step and provides references to these. The 

practical part describes implementation details of each workflow step and its manual or 

automatic functioning. In the case of a manual workflow step, all required steps are visualized 

with screenshots. In the case of an automatic workflow step, its functioning and 

implementation details, as well as input and output data, are visualized in a schematic figure.  

 

The term methodology developed refers to the entire workflow. Workflow steps refer to each 

of the workflow components. Plugin refers to the implementation of the final workflow step, 

i.e., interactive outlining. The remaining workflow steps are implemented in script to be run in 

Python, Matlab, QGIS or GRASS GIS (Table 1). 
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Figure 4. Delineation workflow. 

 
Table 1. Implementation of delineating workflow. 

Workflow step Script Software 

Data pre-processing 

A1_resizing PyQGIS 

A2_gPb_contour_detection Matlab 

A3_raster_to_centerline PyQGIS 

A4_SLIC_superpixels GRASS GIS 

A5_SLIC_raster_to_lines PyQGIS 

A6_SLIC_attributes PyQGIS 

Machine learning B1_RF_classification Python 

Interactive outlining BoundaryDelineation (QGIS plugin) PyQGIS 

 

 

2. Data Pre-Processing 

2.1. UAV Data 
 

The following example implementation of the workflow is based on data from Amtsvenn, 

Germany (latitude/longitude: 52.17335/6.92865) shown in Figure 5. The data were captured 

with indirect georeferencing, i.e., Ground Control Points (GCPs) were distributed in the field 

and measured with a Global Navigation Satellite System (GNSS). The orthoimage captures an 

extent of 1000 x 1000 m and has a Ground Sample Distance (GSD) of 0.05 m. It was captured 

with a fixed-wing UAV (model: GerMAP G180, camera: Ricoh GR) flying with a forward 

overlap of 80% and a sideward overlap of 65%. The orthoimages were generated with 

Pix4DMapper software. 
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(a) (b) 

Figure 5. UAV data of Amtsvenn, Germany showing an extent of 1000 x 1000 m with a GSD of 0.05 m 

as RGB (a) and DSM (b) orthoimages.  

2.2. gPb Contour Detection 

2.2.1. Background 
 

Contour detection refers to detecting closed boundaries between objects or segments. Out of 

different approaches for an initial detection of candidate boundaries [63], the following method 

was found to work nearly optimal: globalized Probability of Boundary (gPb) contour detection. 

It refers to the processing pipeline visualized in Figure 6, explained in this section and based 

on [67]. This pipeline originating from computer vision aims to find closed boundaries between 

objects or segments in an image. This is achieved through combining edge detection and 

hierarchical image segmentation, while integrating image information on texture, color and 

brightness on both a local and a global scale. 

 

In a first step, oriented gradient operators for brightness, color and texture are calculated on 

two halves of differently scaled discs. The cues are merged based on a logistic regression 

classifier resulting in a posterior probability of a boundary, i.e., an edge strength per pixel. The 

local image information is combined through learning techniques with global image 

information that is obtained through spectral clustering. The learning steps are trained on 

natural images from the ‘Berkeley Segmentation Dataset and Benchmark’ [68]. By considering 

image information on different scales, relevant boundaries are verified, while irrelevant ones, 

e.g., in textured regions, are eliminated. This is referred to as global optimization in the 

following. 

 

In the second step, initial regions are formed from the oriented contour signal provided by a 

contour detector through oriented watershed transformation. Subsequently, a hierarchical 

segmentation is performed through weighting each boundary and their agglomerative 

clustering to create an ultrametric contour map that defines the hierarchical segmentation. 
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The overall result consists of (i) a contour map, in which each pixel is assigned a probability 

of being a boundary pixel, and (ii) a binary boundary map containing closed contours, in which 

each pixel is labeled as ‘boundary’ or ‘no boundary’ (Figure 9). The approach has been shown 

to be applicable to UAV orthoimages for an initial localization of candidate object boundaries 

[64]. UAV orthoimages of extents larger than 1000 x 1000 pixels need to be reduced in 

resolution, due to the global optimization of the original implementation. The localization 

quality of initially detected candidate boundaries is improved through the following workflow 

steps.  
 

 
Figure 6. Processing pipeline of globalized probability of boundary (gPb) contour detection and 

hierarchical image segmentation resulting in a binary boundary map containing closed boundaries. 

2.2.2. Realization 
 

Due to the global optimization of the gPb contour detection approach, preventing the use of 

images with extents larger than 1000 x 1000 pixels, the RGB orthoimage is downsampled to 

<=1000 x 1000 pixels. This is done with a PyQGIS script (Figure 7). 

 

 
Figure 7. Schematic representation of downsampling script available in [66]. 

gPb contour detection is implemented in Matlab (Figure 8) [69] [69] [68] [69]. The source code 

is publicly available in [70]. The script requires a list of precompiled *.mex files in a lib 

directory and runs on Linux. That lib directory contains a geotiffwrapper.m script, in 

which the variable A.ProjectedCSTypeGeoKey needs to be set to the EPSG code of the 

input image. This ensures that the output *.tif files have the same georeferencing as the input 

images. All files in the lib directory are precompiled *.mex files, which are called via the 

main script (gPb_ucm_final.m). The images to be processed (*.tif and their *.tfw files) 

need to be copied to the data directory. An example output of gPb contour detection is shown 

in Figure 9.  
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Figure 8. Schematic representation of gPb contour detection script available in [66]. 

 

  
(a) (b) 

Figure 9. The result of gPb contour detection applied to the Amtsvenn UAV data (Figure 2). (a) shows 

a contour map, in which each pixel is assigned a probability of being a boundary pixel. (b) shows a 

binary boundary map containing closed contours, in which each pixel is labeled as ‘boundary’ or ‘no 

boundary’. 

The gPb raster map is transferred to a vector shapefile by keeping the centerline for each gPb 

contour. This is done with a PyQGIS script (Figure 10).  

 

 
Figure 10. Schematic representation of raster to centerline conversion script available in [66]. 
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2.3. SLIC Superpixels 

2.3.1. Background 
 

Simple linear iterative clustering (SLIC) superpixels originate from computer vision and are 

introduced in [71]. Superpixels aim to group pixels into perceptually meaningful atomic 

regions and can therefore be located between pixel- and object-based approaches. The 

approach allows to compute image features for each superpixel rather than each pixel, which 

reduces subsequent processing tasks in complexity and computing time. Further, the 

boundaries of superpixels adhere well to object outlines in the image and can therefore be used 

to delineate objects [72]. 

 

When comparing state-of-the-art superpixel approaches, SLIC superpixels have outperformed 

comparable approaches in terms of speed, memory efficiency, compactness and correctness of 

outlines [73-75]. The approach, visualized in Figure 11, was introduced and extended by 

Achanta el al. (2010, 2012). SLIC considers image pixels in a 5D space, in terms of their L*a*b 

values of the CIELAB color space and their x and y coordinates. Subsequently, the pixels are 

clustered based on an adapted k-means clustering. The clustering considers color similarity and 

spatial proximity. SLIC implementations are widely available. This study applies the GRASS 

implementation [78]. 

 

The approach has been shown to be applicable to UAV orthoimages of 0.05 m ground sample 

distance (GSD) [65]. Further, cadastral boundaries demarcated through physical objects often 

coincide with the outlines of SLIC superpixels. 
 

 
Figure 11. Processing pipeline of simple linear iterative clustering (SLIC) resulting in agglomerated 

groups of pixels, i.e., superpixels, whose boundaries outline physical objects in the image. 

2.3.2. Realization 
 

SLIC superpixels are created from the RGB orthoimage using a GRASS Add-on [79], which 

is executable in the GRASS GIS console [78]. The commands in 

A4_SLIC_superpixels.txt need to be entered in the GRASS console (Figure 12). 
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Figure 12. Schematic representation of SLIC superpixel script available in [66]. 

The SLIC raster map is transferred to a vector by keeping the outline of each SLIC segment as 

a vector polygon. The outline of each polygon is broken into several line segments, wherever 

two outlines of polygons intersect. This is done with a PyQGIS script (Figure 13). 

 

 
Figure 13. Schematic representation of raster to line conversion script available in [66]. 

For each SLIC line segment, different attributes are calculated by taking into account 

information from the gPb and ucm maps, the RGB and DSM orthoimages, as well as 

information on each line’s geometry and topology (Table 2, Figure 14). All input layers are 

clipped to 3 m around the reference data to reduce processing time. 

 
Table 2. Attributes calculated per SLIC line segment 

Attribute Description 

length [m] length per SLIC segment along the line 

ucm_rgb median of all ucm_rgb pixels underlying a SLIC segment 

lap_dsm median of all pixels from DSM laplacian filter underlying a SLIC segment 

dist_to_gPb [m] distance between SLIC segment and gPb lines (overall shortest distance) 

azimuth [°] horizontal angle measured clockwise from north per SLIC segment 

sinuosity ratio of distance between start and end point along SLIC segment (line length) 

and their direct Euclidean distance 

azi_gPb [°] horizontal angle measured clockwise from north per gPb segment closest to a 

SLIC segment (aims to indicate line parallelism/collinearity) 

r_dsm_medi median of all DSM values lying with a 0.2m buffer right of each SLIC segment 

l_dsm_medi median of all DSM values lying with a 0.2m buffer left of each SLIC segment 

r_red_medi median of all red values lying with a 0.2m buffer right of each SLIC segment 

l_red_medi median of all red values lying with a 0.2m buffer left of each SLIC segment 

r_gre_medi median of all green values lying with a 0.2m buffer right of each SLIC segment 

l_gre_medi median of all green values lying with a 0.2m buffer left of each SLIC segment 

r_blue_med median of all blue values lying with a 0.2m buffer right of each SLIC segment 
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l_blue_med median of all blue values lying with a 0.2m buffer left of each SLIC segment 

red_grad absolute value of difference between r_red_medi and l_red_medi 

green_grad absolute value of difference between r_green_medi and l_green_medi 

blue_grad absolute value of difference between r_blue_medi and l_blue_medi 

dsm_grad absolute value of difference between r_dsm_medi and l_dsm_medi 

 

 
Figure 14. Schematic representation of attribute calculation script available in [66]. 

 

3. Machine Learning 

3.1. SLIC Line Labelling 

3.1.1. Background 
 

The labelling of SLIC lines distinguishes between the two categories ‘boundary’ and ‘no 

boundary’. Each SLIC line segment that belongs to a visually detectable object that delineates 

a cadastral boundary should be labelled manually as ‘boundary’ by a human operator. This 

needs to be done for the training and validation data that are required for the subsequent 

classification.  

 

3.1.2. Realization 
 

The labelling can be done in any GIS software such as QGIS or ArcGIS. First, the SLIC line 

shapefile layer and the RGB layer are loaded. In the attribute table of the SLIC layer, all 

calculated attributes as well as one column named ‘boundary’ should be present. In the end, 

the ‘boundary’ column should be filled with ones (for ‘boundary’) and zeros (for ‘no 

boundary’). The following steps show, how this is realized in QGIS (Table 3). 
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Table 3. SLIC line labelling in QGIS 

Step Action Screenshot 

1 
Load SLIC line shapefile layer 

and RGB layer in QGIS 

 

2 

Select all line segments to be 

labelled as boundary (Ctrl + 

Left-Click to select multiple 

lines at once) 

 

3 
Open attribute table of SLIC line 

shapefile 

 

4 Start editing the layer 

 

5 

Change value for all selected 

features to boundary = 1, save 

edits and stop editing 
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6 Save updated layer as *.csv file 

 

 
 

3.2. Random Forest (RF) Classification 

3.2.1. Background 
 

Contour generation aims to support the identification of a subset of superpixels, whose 

collective boundaries correspond to object contours in the image. This idea is based on work 

of Levinshtein et al., who first reformulated the problem of finding contour closure to finding 

subsets of superpixels aligned with object contours [80,81]. The authors combine features such 

as distance, strength, curvature and alignment to identify edges for image segmentation. These 

features are combined by learning the best generic weights for their combination on a computer 

vision benchmark dataset. This approach can be related to perceptual grouping in which local 

attributes in relation to each other are grouped to form a more informative attribute that contains 

context information [82]. By iteratively grouping low-level image descriptions, a higher-level 

structure of higher informative value is obtained [83]. Perceptual grouping for contour closure 

is widely applied in computer vision [84,85], pattern recognition [83] as well as in remote 

sensing to extract agricultural field boundaries [86] or roads [87]. The criteria for perceptual 

grouping are mostly based on the classical Gestalt cues of proximity, continuity, similarity, 

closure, symmetry, common regions and connectedness that originate from Lowe’s early work 

on perceptual grouping, in which a computational model for parallelism, collinearity, and 

proximity is introduced [88]. The attributes are mostly combined into a cost function that 

models the perceptual saliency of the resulting structure. 

 

The ideas described above are transferable to the workflow developed: Wegner et al. (2015) 

extract road networks from aerial imagery and elevation data by applying superpixel-based 

image segmentation, classifying the segments with a random forest (RF) classifier and 

searching for the Dijkstra least-cost path between segments with high probabilities of being 

roads. Warnke and Bulatov (2017) extend this approach by optimizing the methodology in 

terms of feature selection. They investigate the training step by evaluating two classifiers and 

show that choosing features largely influences classification quality and that feature 

importance depends on the selected classifier. Similarly, García-Pedrero et al. (2017) use 

superpixels as minimum processing units, which is followed by a classification-based 

agglomerating of superpixels to obtain a final segmentation of agricultural fields from satellite 

imagery. All these approaches consider superpixels as segments: superpixels are agglomerated 

by comparing features per segment in relation to its adjacent neighbors [90-92], sometimes in 

combination with boundary information [93,94].  
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To automate the delineation of cadastral boundaries, the problem of finding adjacent 

superpixels belonging to one object is reformulated to finding parts of superpixel outlines that 

delineate one object: attributes are not calculated per superpixel, but per outline (Figure 15). 

They are created by splitting each superpixel outline, wherever outlines of three or more 

adjacent superpixels have a point in common. Attributes per line are calculated to infer a weight 

indicating the likelihood of belonging to a (parcel) boundary line. Similar to the classical 

Gestalt cues, the attributes consider the SLIC lines themselves (i.e., their geometry) and their 

spatial context (i.e., their relation to gPb lines or to underlying RGB and DSM rasters). For 

training and validation, one attribute is added manually by labelling SLIC lines corresponding 

to reference object outlines as ‘boundary’ or ‘no boundary’, respectively. The data are divided 

into groups for training and validation. All attributes apart from the manual one are combined 

by a RF classifier producing a synthesized likelihood value per line in range [0; 1] for the 

validation data. This value is used to find the least-cost path between points indicated by a user. 

The points represent start-, end, and optionally middle-points of a boundary to be delineated. 

They are connected along SLIC lines via a Steiner least-cost path. Finally, the result is 

displayed to the user providing the options to accept, edit and/or save the line. This interactive 

outlining is implemented as an open source QGIS plugin [95]. 

 

 

 
Figure 15. Processing pipeline of interactive delineation: each superpixel outline is split, wherever 

outlines of three or more adjacent superpixels have a point in common (visualized by line color). 

Attributes are calculated per line. They are combined with a RF classifier to produce likelihoods for 

being a boundary (visualized by line thickness). User-selected nodes (red points) are connected along 

lines of highest likelihoods. 

 

3.2.2. Realization 
 

The classification is implemented based on a scikit-learn Python implementation [96] of RF 

classification[97][97][96][97]. The script can be executed in a regular Python programming 

environment such as PyCharm (Figure 16). 
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Figure 16. Schematic representation of RF classification script available in [66]. 

After classification, the *.csv file, i.e., the attribute table with the updated probabilities, needs 

to be merged to the shapefile of SLIC lines. Probabilities of lines being a boundary line are 

updated only for those belonging to the validation dataset. The referencing is done via the 

unique ID value (Table 4). 

 
Table 4. Assigning RF probabilities to SLIC lines. 

Step Action Screenshot 

1 
Load *.csv file as delimited text 

file 

 

2 
Change field type of ID to integer 

and save as ‘new_ID’ 
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3 

Join attribute tables of SLIC 

shapefile and refactored *.csv file 

based on ID value 

 

 

 

4 

Delete all fields in attribute table 

apart from ‘proba_bo’ with the 

‘refactor field’ module (or in 

attribute table editor) and save as 

shapefile for further processing.  

 

Make sure the field containing the 

probabilities per line segment has 

the name ‘proba_bo’. 

 

 

 

4. Interactive QGIS Plugin 

4.1. Plugin Workflow 

4.1.1. Background 
 

The QGIS plugin combines the detection quality of gPb contour detection with the localization 

quality of SLIC superpixels. Furthermore, it allows the user to interactively finalize detected 

contours to cadastral boundaries by connecting subsets of superpixels, whose collective 

boundaries correspond to object contours in the image. The plugin workflow consists of two 

parts: (i) First, the SLIC lines having certain probabilities, i.e. costs assigned to each line are 

transferred to a point layer containing nodes wherever two or more SLIC lines intersect. (ii) 

Second, these nodes are used for a semi-automatic delineation of final boundaries through a 

human operator (Figure 17a). Both parts are implemented in a publicly available QGIS plugin 

[95] with a Graphical User Interface (GUI) shown in Figure 17b.  
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In (i), the SLIC line segments are transferred to a network with nodes on each intersection of 

two or more SLIC lines and the nodes are displayed to the user. In (ii), the user is asked to 

select two or more nodes along a land parcel boundary. These are then automatically connected 

based on the Steiner tree method [98]. This method searches the least-cost path along the 

remaining SLIC outlines between the nodes that the user selects. A sinuosity measure is 

calculated for the created line, in order to provide the user with an indication on the line’s 

usability. Sinuosity measures to which extent a line between two points varies from their direct 

connection, i.e., the ratio between the Euclidean distance between two points and the length of 

the line connecting the two points. The range of the sinuosity measure is [0; 1]. It is equally 

divided into three parts to color the line according to a traffic light evaluation system in red, 

yellow and green. The line is displayed accordingly to indicate the line’s usability to the user. 

Thereafter, the user has the option to simplify the created line, which is done based on the 

Douglas-Peucker approach [99]. This algorithm simplifies the line by creating a curve along a 

series of points and gradually reducing the number of points. The user further has the option to 

manually edit the line or specific nodes of the line by making use of the extensive QGIS editing 

functionalities [100]. Further options consist of deleting or accepting the line. Choosing the 

latter, leads to a display of the initial nodes and the request to select a new set of nodes to be 

connected. 

 

 

(a) (b) 
Figure 17. (a) QGIS processing model of the BoundaryDelineation QGIS plugin [95] and (b) its 

graphical user interface (GUI).  

 

4.1.2. Realization 
 

The QGIS plugin (Figure 18) is implemented in Python making use of open source GIS 

processing modules from GRASS [79], QGIS [101] and GDAL [102]. The plugin can be 

downloaded via the QGIS plugin repository by searching for ‘BoundaryDelineation’ (Figure 

19). The source code, as well as test data are publically available via GitHub [103]. This 

repository furthermore provides a manual describing how to install and use the plugin. Its use 

https://github.com/SCrommelinck/BoundaryDelineation/blob/master/QGIS%20plugin%20BoundaryDelineation%20manual.pdf
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is further demonstrated in a YouTube video (Figure 20). Links to resources are gathered on the 

its4land project website as well. 

 

Figure 18. Schematic representation BoundaryDelineation QGIS plugin script available in [103]. 

 

 
Figure 19. BoundaryDelineation plugin publically available in official QGIS plugin repository [95]. 

https://youtu.be/E-cINJNkMEw
https://its4land.com/automate-it-wp5/
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Figure 20. Screenshot of YouTube video demonstrating the use of the BoundaryDelineation plugin. 

 

5. Conclusion 
 

The work presented in this report contributes to advancements in developing a methodology 

for UAV-based delineation of visible cadastral boundaries. The goal was to develop a 

methodology for cadastral boundary delineation that is highly automatic, generic and adaptive 

to different scenarios. This has been addressed by proposing a methodology that partially 

automates and simplifies the delineation of outlines of physical objects demarcating cadastral 

boundaries. It is designed for areas, in which physical object contours are clearly visible and 

coincide with cadastral boundaries. The approach has shown promising results for reducing the 

effort of current indirect surveying approach based on manual delineation. 

 

In general, the methodology could improve current indirect mapping procedures by making 

them more reproducible and efficient. However, a certain skill level of the surveyors in geodata 

processing is required as well as the presence of visible cadastral boundaries. With cadastral 

boundaries being a human construct, certain boundaries might not be automatically detectable, 

wherefore semi-automatic approaches are required [104]. 

 

Future work could focus on determining optimal features for training [89,105]. The optimal 

selection of training data could be supported by active learning strategies. Another focus would 

be extending the approach to different physical objects, datasets and scenarios by developing 

a classifier transferable across scenes. However, even manually labelling 30% of the data 

before being able to apply the interactive delineation, would still be superior in terms of effort 

than delineating 100% manually. Existing cadastral data could be used to automatically 

generate training data. Further, the least-cost paths generation can be improved by scaling the 

line costs with their length to avoid the path favoring less segments over lower costs. In 

addition, sharp edges in the generated least-cost path can be penalized to reduce outlier 

occurrence, as done in snake approaches.  
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Besides methodological aspects, future work should focus on the methodology’s transferability 

to real world cadastral mapping scenarios. This will be done in countries like Kenya, Rwanda 

and Ethiopia, where concepts like fit-for-purpose [21] and responsible land administration 

[106] are accepted or in place.  

 

With regard to the next deliverable in the its4land project, future work will also concentrate on 

the integration of existing maps as a source of geometric and semantic information that was 

left undetected by the automatic feature extraction. Smart sketchmaps that transfer hand-drawn 

maps into topologically and spatially corrected maps could be integrated in the workflow [107]. 

This will allow the integration of local spatial knowledge and to delineate socially perceived 

boundaries, which are not visible to optical sensors.  

 

Future development outside of the its4land project on UAV-based cadastral mapping can be 

expected, since the ISPRS lists UAVs as key topic and stresses their potential for national 

mapping in their recent paper on trends and topics for future work [108]. Moreover, the 

European Union has acknowledge the use of UAV-derived orthoimages as a valid source for 

as an additional source of information for land policy monitoring [42]. 
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