

Horizon 2020 European Union funding for Research & Innovation

MasterClass

"Its4land" - innovative geospatial tools for fit-forpurpose land rights mapping

Annual World Bank Conference on Land and Poverty March 25-29, 2019 Washington D.C, United States

What are we going to do?

- 1. Find out: About 'its4land'
- 2. Learn from us: its4land toolbox
- 3. Learn from you: Is the its4land toolbox something for you?

Snapshot

Program: H2020-ICT-2015 Type of Action: Research and Innovation (RIA) Topic: International partnership building in low and middle income countries Acronym: its4land Number: 687828 Duration: 48 months Start Date: 2016-02-01 Consortium: 8 partners Budget: 3.9 EU

Objective of its4land:

Developing an innovative suite of land tenure recording tools inspired by geo-information technologies that responds to end-user needs and market opportunities in sub Saharan Africa, reinforcing an existing strategic collaboration between EU and East Africa.

its4land - Innovation

The innovation process incorporates a broad range of <u>stakeholders</u> and emergent <u>geospatial technologies</u> including:

- Smart sketch maps
- Unmanned Aerial Vehicles (UAVs)
- Feature extraction
- Sharing and publishing through geocloud services

The aim is to combine these innovative approaches with the <u>specific</u> <u>needs</u>, <u>market opportunities</u> and <u>readiness of end-users</u> in the domain of land tenure information recording in East Africa.

Case locations

RWANDA - developing approaches that can support updating, at scale, land rights documents and maps

KENYA - adapting tools to enable mapping of pastoralist land rights and layered disputes

ETHIOPIA - developing approaches that improve plot recordation of urban smallholder and dwellers (peri-urban and rural landscapes)

Contextualization - Get Needs

KUL – Capture the specific needs, market opportunities, and readiness of end-users in the domain of land tenure information recording.

In 2017, they engaged with <u>57 organizations</u> and community groups across the three case countries (more than <u>100 individuals</u>) – Ethiopia, Kenya and Rwanda

Get Needs Main Objectives

Capture the specific **needs**, **market opportunities**, **and readiness** of end-users in the domain of land tenure information recording in order to support design activities in WPs 3-6 and modelling activities in WPs 7-8.

Main activities

- Semi-structured group interviews
- Ø Workshops
- Qualitative and quantitative analysis
- Dissemination and communication

Overview of Engagement

- 4 104 organisations and groups contacted
- 59 participated (57% response rate)

Organisations/Groups	Ethiopia	Kenya	Rwanda	Total
Contacted	37	29	38	104
Participated	17	20	22	59
Response rate	46%	69%	58%	57%

Overview of Engagement

104 organisations and groups contacted 59 participated (57% response rate)

Land tenure/ Land information need	Frequency of vote	Strength of consensus	*Ranked Priority	**Relative importance
Georeferenced property information connected to registry index map	0.75	30	#1	25
County spatial plan	0.88	24	#2	20
Clearly marked ecologically fragile areas)	0.63	15	#3	12.5
Community involvement (sensitisation, etc.)	0.5	13	#4	10.8
Resurvey of adjudicated areas of public utilities	0.38	7	#5	5.8
Number of properties (and its attributes) in the county	0.25	7	#5	5.8
Overlaying minimum use threshold of land with other data	0.5	6	#6	5
Land fragmentation not properly controlled (subdivision too small)	0.38	5	#7	4.2
Proper documentation of utilities for protection (gazetting)	0.25	5	#7	4.2
Relationship of land laws especially around property transactions	0.25	4	#8	3.3
Improving data management for multi-purpose use	0.13	3	#9	2.5
Good practices related to surveying and mapping	0.13	1	#10	0.8

Pref.	Ethiopia	Kenya	Rwanda				
Data	Data input needs						
1	Cadastral data (63%) (Spatial attributes; socio-economic attributes; tenure type/RRRs; other ownership evidence; property attributes; accurate data; geodetic control points)	Cadastral data (42%) (Accurate data; tenure type/RRRs; spatial attributes; other ownership evidence)	Non-cadastral data (30.2%) (Infrastructure; development plans; land use; land use zone; geology; topographic data; climate)				
2	Non-cadastral data (19.5%) (Land use zone; land use; administrative boundaries)	Non-cadastral data (28.4%) (Land use zone; natural resources; infrastructure; cultural sites; land injustices)	Cadastral data (22.2%) (Spatial attributes; accurate data; other ownership evidence; property attributes; socio-economic attributes)				
3		Stakeholder engagement (2.7%) (Legal aspects; women's land rights)	Stakeholder engagement (3.2%) (Consultation)				
Data	use and management						
1	Data management (10.9%) (data maintenance; data security; LIS)	Data analysis (10.8%) (Data integration; analytical functions; digital data; multipurpose use)	Data management (22.2%) (Data accessibility; data maintenance; data ownership/availability; open source; mobile tools)				
2		Land transactions (5.4%) (Dispute resolution; affordability)	Data analysis (15.9%) (GIS software; data integration; digital data)				

Tool preferences

Preference	Ethiopia	Kenya	Rwanda
1	Geocloud services	UAVs	UAVs
2	Smart sketchmaps	Automated feature extraction	Geocloud services
3	UAVs	Geocloud services	Smart sketchmaps
4	Automated feature extraction	Smart sketchmaps	Automated feature extraction

Identified pros and cons

Tool	Pros	Cons
UAVs	High accuracy aerial imagery Can be deployed at any time Can capture data over difficult terrain	Significant barriers to implementation Imagery requires post-processing - skills and ICT infrastructure Significant cost implications
Automated feature extraction	Reduce manual intervention in digitization	
Geocloud services	Improve data analysis and management functionalities	Technical challenges around implementation New skills required
Smart sketchmaps	Requiring low resources (financial and technical) and without needing regulatory intervention Sketching a familiar process	'Smart' component was difficult to understand, and how to incorporate with existing data.

Readiness requirements

- Strategic requirements
- Structural/governance requirements
- Organizational requirements
- 4 Technical requirements

Readiness change model

Ethiopia:

- Concerns around improving integrity, transparency and equitability of land transaction processes
- Cadastral data a priority + other types of evidence

- (1) geocloud services, (2) smart sketchmaps, (3) UAVs
- Challenges for adoption and scaling e.g. land governance, differing levels of maturity in land administration

Kenya:

- Need for improved cadastral data, but also better quality noncadastral data
- UAVs clearly preferred
- Challenges for adoption and scaling e.g. lack of regulatory framework

Rwanda:

- Need non-cadastral data prioritised
- Need to improve data management capabilities
- Still a need to improve cadastral data elements
- (1) UAVs, (2) geocloud services
- Significant practical challenges e.g. governance, capacity, etc.

Regional outcomes

- Land info needs: cadastral data vs. non-cadastral data
- Data analysis and management needs: ET, RW
- All agree on potential of UAVs, but....
- other technologies also have potential, but with greater variation
- Governance conditions: federated systems vs. central govt
- Market opportunities difficult to identify but broad agreement on the fundamental role of good quality land information in public service delivery

Land information needs	National govt	Sub-natl govt	Non- govt	No. of votes	% of total votes
Non-cadastral data linked to cadastre				92	31
Physical characteristics of land	2	30			
Current land use information	13	5	10		
Information to support development decisions		4	20		
Other information needs	8				
Spatially and temporally accurate data	14	45		69	23
Data discoverability and accessibility	12	16	14	42	14
Cadastral data				34	11
Land value			17		
Parcel boundaries		4	5		
Area	6				
Transactions		2			
Data tools		17		17	6
Communication with stakeholders		6	9	15	5
Data processes				10	3
Data harmonisation	5				
Data integration	5				
Decision-making ability		9		9	3
System needs	5			5	2
Monitoring ability	5			5	2

Draw and Make: Land Tenure Mapping with Smart Sketchmaps

WWU Muenster - Implementation of a

sketch based geospatial data recording to capture land tenure data from local perspective.

Field visits to Kajiado, Kenya and Bahir-Dar Ethiopia (data collection, data verification/validation)

Draw and Make: Workflow

Draw and Make: Workflow

Fly and Create: UAV-based Land Tenure Data Acquisition

UT (ITC) – To design, test and validate UAV workflow

UAV workflow for land tenure data acquisition

- Selection of a suitable UAV
- Purchase, shipping and import UAVs
- Pilot training

- Fixed wing UAV, 60 min of endurance
- Payload:
 - Industrial grade RGB camera
 - IMU/GNSS Applanix APX-15

What can be provided by UAV imagery?

Metadata information: Geotag locations

43; 13; 4.2147000000113977 0; 59; 57.27492000000122 416.136749

Post-processing of images

What can be provided by UAV imagery?

- High resolution orthophotos
- Digital surface models
- 3D point clouds

→ Derive information on land use, land tenure and land value
 → Automated image analysis to extract visible boundaries or land information

Rwanda

Kenya

Tanzania

Ebee 3DR Inspire FireFLY6 • UAV: DT18 Plus Pro Iris+ 2.5 RMSE horizontal checkpoint residulas (m) 2 1.5 • 1 0.5 0 KE 2 ZAN 02 RW 10 ZAN 09 ZAN 12 ZAN 15 RW 14 RW 3 RW 8 GER 4 High quality IMU/GNSS PPK corrected geotags Lower quality IMU/GNSS

Data quality

- DT18 and Ebee plus operate with multifrequency receiver
- InspirePro, 3DR Iris+ and FireFLY6 are equipped with a single frequency GNSS receiver

35

Data quality

- Already 4 GCPs reduce systematic errors due to GNSS ambiguities
- High quality of DT18 GNSS with 0 GCPs
- If image quality is weak, even 9 GCPs cannot compensate poor block robustness

36

Fly and Create Exploitable Result – Consultancy Services

The consultancy service of WP4 includes guidelines and a customizable workflow for UAV-based data acquisition in the context of land administration.

Components of a UAV data collection

All requirements have to be fulfilled before starting the UAV data collection.

Flight Permission

Significant impact on **how**, **where**, and **when** data can be captured

ITS 4 LAND

UAV workflow

Scenario analysis:

- UAV equipment
- Flight planning
- Ground truthing
- Operational requirements

UAV workflow UAV with RTK or PPK capabilities? No Pe Procedures to achieve Do you have a RTK base Use of ground control high geometric accuracy station? points mandatory Can you maintain a radio Do you have access to link between the base reference data* of a No CORS network? station and the UAV? No UAV flight with UAV flight with PPK Yes simultaneous RTK corrections after the * reference station closer than 70km corrections flight ITS 4 LAND

Boundary Creation: Feature Extraction

UT (ITC) – To design a tool for delineation of visible cadastral boundaries based on airborne /satellite images

Semi-automatic delineation of visible cadastral boundaries from aerial imagery

- Pacilitate indirect cadastral surveying
 - Ø by extracting visible boundary features
 - by making delineation more efficient

Feature Extraction Workflow

Applied workflow to detect and extract linear features considered for boundary delineation using airborne and satellite imagery

Publish and Share: GeoCloud

HL - Software tools integration in publish and share software platform

Exploitable Result of Publish and Share

Publish and Share helps the integrator or ISV to efficiently build land administration workflows.

Publish and Share provides different usage models for developing land administration tasks

Publish and Share can be used in combination with the existing its4land tools or it can be extended by 3rd party tools

Publish and Share Platform

Building Blocks

- A set of public REST-APIs that allows tools and applications to interact with the Publish and Share platform
- 2. A tool runtime environment for smart sketchmaps, image processing, boundary delineation and other tools
- 3. A data repository for alphanumeric, geo, binary and image data
- 4. OGC services for data dissemination

Integration in LAS

Publish and Share API

Implemented as a REST Web API

- Endpoints implement LADM concepts
 - Spatial Units, Spatial Source, Admin Source, etc.
- Fully documented by an interactive API reference
- Can be used with any programming language on all major operating systems

its4land Public API

swagger.yaml

The its4land Public API provides access to the services of the its4land Publish and Share platform. its4land - Website

Send email to its4land MIT

Schemes HTTPS ~

Find out more: https://plaform.its4land.com	>
Find out more: https://plaform.its4land.com	>
Find out more: https://plaform.its4land.com	>
Find out more: https://plaform.its4land.com	>
Find out more: <u>https://plaform.its4land.com</u>	>
Find out more: https://plaform.its4land.com	>
	Find out more: https://plaform.its4land.com

SpatialSources Everything about SpatialSources. A SpatialSource documents the evidence for as SpatialIUnit. A SpatialSource can be a SketchMap, Orthoimages, etc. An SpatialSource may have several manifestations at the same time. See LADM for more details.
GET /spatialsources Returns a list of SpatialSources
POST /spatialsources Create a new SpatialSource
GET /spatialsource/{spatialsource_uid} Returns a single SpatialSource
GET /spatialsource/{spatialsource_uid}/AdditionalDocument Returns the additional documents of a spatial source
POST /spatialsource/{spatialsource_uid}/AdditionalDocument Add a new additional document to a spatial source
GET /spatialsource/{spatialsource_uid}/AdditionalDocument/{adddoc_uid} Returns the additional documents of a spatial source
DELETE /spatialsource/{spatialsource_uid}/AdditionalDocument/{adddoc_uid} Removes an additional document for a spatial source.

reate a new SpatialSou	arce. To add a new SpatialSources, the content of SpatialSources must be stored in advanced via the ContentItem endpoint.				
arameters	Try it:				
lame	Description				
nvelope					
tring query)	The endpoint can package event/thing (header, status code) neatly into the response body include envelope=true as a request parameter. The API will always return 200 HTTP status code. The real status, headers and response will be within the body. Available values : yes, no				
ewenatialeource *	required New SpatialSource data				
ody)	Example Value Nodel				
	f "type", "Type", "Search price", "Status It as", "Search price", "type", f "type", j j p Parameter content type				
	application/json v				
mbed rray[string] (quezy)	Embedding is liliggened by passing in an embed query parameter, which takes a comma separated list of endpoint types. Single fields can be selected a dot-note (endpoint type properly name)				
rocess_uid tring header)	deprecated				
41-process-uid tring header)	Process UID. This parameter can be used by an its4and tool running inside the runtime environment to pass the process uid to the endpoint. With this information th endpoint can associate the newly created or updated resource with the process.				
tesponses	Response context type application/json				
lesponses Code	Response content type application/json Description				
Code	Description Created - Resource created. UNL to new resource in location header				
Code	Description				
Code	Description Created - Resource created. UNL to new resource in location header				
Code	Description Created - Resource created. URL to new resource in Location header Exemple Value Value Value (
Code	Description Created - Resource created. URL to now resource in Location hander Exempts Value Model				
Code	Description Created - Resource created. URL to new resource it Location header Example Value Model ("TTPP:, "TTPP:,"""""""""""""""""""""""""""""""""				
Code	Description Created - Amource created. URL to now resource in Location Ander Example Muhi Model				
ode	Description Texted - Researce created. URL to new resource it location basker Example Value Hood Temple Value (Indescription*) """"""""""""""""""""""""""""""""""""				
Code	Description Teacemants created. Util, to now resource it location basker Example Value Value Type Type Type				
ode	Description Percent of the senance created. URL to new resource it location basker Example Vahie Mode				

Govern and Grow: Sustainable Governance and Capacity Building Models

KUL - Developing of a governance and a capacity development model to support the implementation and evaluation of innovative tools

Review relevant ICT/land governance and capacity development models

The three "Good governance" models are:

- Multi-level Governance Assessment of OECD (OECD, 2011),
- Framework and Guidelines in Land Policy Africa (African Union, African Development Bank, & Economic Commission for Africa, 2010), and
- Land Governance Assessment Framework (World Bank, 2015).

Three sources forming the foundation of the initial model, being:

- The needs from Deliverable 2.5, 2)
- The definitions of Deliverable 7.1
- The selected models presented in Deliverable 7.2.

T7.3 Initial versions of ITS4LAND governance and capacity LAND development models

Initial Governance and Capacity Development Model (IGCDM) has three blocks:

1) The its4land tools

2) The governance context

3) The capacity development.

Building blocks aligned with the seven Fit-for Purpose Land Administration (FFPLA) elements: 1) Flexibility, 2) Inclusive, 3) Participatory, 4) Affordability, 5) Reliability, 6) Attainability and 7) Upgradability (Enemark et al., 2014)..

Alignment between the tools and the FFPLA elements

FFP conditions	Smart Sketchmaps	Unmanned Aerial Vehicles	Automated Feature Extraction	Geocloud Services
Flexibility	The tool can provide information according to the users' needs	The tool can provide information according to the users' needs. It is flexible in spatial resolution and spectral information	The tool can be applied to delineate different types of boundaries, according to the user needs	The tool can be adapted for different usages and scenarios, according to the user needs
Inclusive	The tool has the capacity to capture the different land tenure practices	The tool has the capacity to cover the different types of land (spatial) information.	The tool supports image based identification and vectorization of visible cadastral boundaries	The tool provides information for registration in land administration systems
Participatory	The community is engaged in the adoption of the tool	The community is engaged in the adoption of the tool	The tool is intuitive and open to be used by different stakeholders	There is participation of the users
Affordability	The adoption of the tool is affordable in cost	The adoption of the tool is affordable	The adoption of the tool is affordable	The adoption of the tool is affordable
Reliability	The collected information could be updated and is recognized by the government	The collected information could be updated and officially recognized by the government	The created information can be updated and is recognized as reliable by the government	The collected information is recognized reliable by the government
Attainability	The SSM adoption can be made with the available resources in an efficient manner	The UAV adoption can be made with the available resources in an efficient manner. Cloud services can support its adoption	The AFE adoption can be made with the available resources in an efficient manner	The geocloud adoption can be made with the available resources in an efficient manner
Upgradability	The SSM could be upgraded by the users according to their needs. They can extend the domain of the models	The UAV's information could be upgraded according to the users' needs by flying again over the same area	The tool is developed in a modular fashion allowing partial adaptation and improvements	The geocloud service could be upgraded by the users according to their needs

Building blocks presented allowing an assessment of the its4land tools, the governance context and capacity development context

Setting the criteria to assess the its4land tools enhances the understanding of the governance and capacity development limitations of the tools' adoption

Understanding governance context facilitating the adoption process of the tools + recommendations at different governmental levels.

- A diagnose of the available capacity by distinguishing between the types of governance arrangements and the available capacity will facilitate the adoption of the tools.
- The application of the model -> See Deliverable 7.4 (under full construction)

Capitalize: Exploitation and Business Modelling

HL- Business Model and business plan development for key exploitable results (KERs) of each work package

	KER Type	KER Name	KER Brief Description
nd			
	Consultancy	Needs Assessment	Consultancy services for needs assessment
	Software	Smart Sketchmap (Smart	Smart Sketchmap is a tool to record aspects of people to land
/		SkeMa) Data Collection	relationships where the spatial component is captured using hand drawn
		Tool	sketch maps and described in a qualitative way (not surveyed) and then
			automatically transformed for further usage in a GIS
	Consultancy	UAV-based Data	Consultancy services for UAV-based data acquisition for land tenure
		Acquisition	recording
	Software	Semi-automatic Visible	A tool that facilitates image-based cadastral mapping by extracting visible
		Boundaries Delineator	boundaries automatically and by supporting the delineation procedure.
	Software	Publish and Share	Platform with integrated tools to publish and share land information.
	Consultancy	Governance and Capacity	Consultancy services to apply the governance and capacity development
		Building	models for the use of the its4land geospatial tools

Thank you for your attention.

ITS 4 LAND